Eur. Phys. J. A 23, 79-111 (2005)
DOI 10.1140/epja /i2004-10055-3

THE EUROPEAN
PHYSICAL JOURNAL A

On kaonic deuterium. Quantum field-theoretic and relativistic

covariant approach

AN. Ivanov®P?, M. Cargnelli®, M. Faberd, H. Fuhrmann®, V.A. Ivanova®!, J. Marton®, N.I. Troitskaya®, and

J. Zmeskal®

Atominstitut der Osterreichischen Universitéiten, Arbeitsbereich Kernphysik und Nukleare Astrophysik, Technische Univer-
sitdt Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria, and Institut fiir Mittelenergiephysik Osterreichische Akademie der

Wissenschaften, Boltzmanngasse 3, A-1090, Wien, Austria

Received: 16 June 2004 / Revised version: 2 December 2004 /
Published online: 7 December 2004 — (© Societa Italiana di Fisica / Springer-Verlag 2004

Communicated by V.V. Anisovich

Abstract. We study kaonic deuterium, the bound K ~d state Axq4. Within a quantum field-theoretic and
relativistic covariant approach we derive the energy level displacement of the ground state of kaonic deu-
terium in terms of the amplitude of K~ d scattering for arbitrary relative momenta. Near threshold our
formula reduces to the well-known DGBT formula. The S-wave amplitude of K~ d scattering near thresh-
old is defined by the resonances A(1405), X(1750) and a smooth elastic background, and the inelastic
channels K~d — NY and K~d — NYr, where Y = Y%, ¥° and A°, where the final-state interactions
play an important role. The Ericson-Weise formula for the S-wave scattering length of K~ d scattering is
derived. The total width of the energy level of the ground state of kaonic deuterium is estimated using the
theoretical predictions of the partial widths of the two-body decays Axq — NY and experimental data on
the rates of the NY pair production in the reactions K~d — NY. We obtain I's = (630 & 100) eV. For
the shift of the energy level of the ground state of kaonic deuterium we predict €15 = (325 + 60) eV.

PACS. 11.10.Ef Lagrangian and Hamiltonian approach — 11.55.Ds Exact S matrices — 13.75.Gx Pion-
baryon interactions — 36.10.-k Exotic atoms and molecules (containing mesons, muons, and other unusual

particles)

1 Introduction

Kaonic deuterium Agq4 is an analogy of hydrogen with an
electron and the proton replaced by the K ~-meson and
the deuteron, respectively. The relative stability of kaonic
deuterium is fully due to Coulomb forces [1-7]. The Bohr
radius of kaonic deuterium, is
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where u = mgmg/(mi + mq) = 391 MeV is a reduced
mass of the K ~d system, calculated at myx = 494 MeV
and m, = 1876 MeV [8], and a = €?/hc = 1/137.036
is the fine-structure constant [8]. Below we use the units
h=c=1, then a = ¢? = 1/137.036. Since the Bohr ra-
dius of kaonic hydrogen is much greater than the range
of strong low-energy interactions Ry ~ 1/m,— = 1.42fm
and the radius of the deuteron r4 = 4.32 fm [9], the strong
low-energy interactions can be taken into account pertur-
batively [1-7].

According to Deser, Goldberger, Baumann and
Thirring [1] the energy level displacement of the ground
state of kaonic deuterium can be defined in terms of the
S-wave amplitude f& ¢(Q) of low-energy K ~d scattering
as follows:
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(1.2)
where ¥14(0) = 1/y/ma3 is the wave function of the

ground state of kaonic hydrogen at the origin and f& ¢(0)
is the amplitude of K~d scattering in the S-wave state,
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calculated at zero relative momentum ¢ = 0 of the
K~d pair. The DGBT formula can be rewritten in the
equivalent form

= 2ab ),

(1.3)

—€1s
where 2a3u? = 602eV fm~! and f& 9(0) is measured in
fm. The formula (1.3) is used by experimentalists for the
analysis of experimental data on the energy level displace-

ment of the ground state of kaonic deuterium [10].
For non-zero relative momentum () the amplitude

& 4(Q) is defined by
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where 7 4(Q) and 6% 4(Q) are the inelasticity and the
phase shift of the reaction K~ +d — K~ + d, respec-
tively. At relative momentum zero, (Q = 0, the inelastic-

ity and the phase shift are equal to nf ¢(0) = 1 and
§E4(0) = 0. For Q — 0 the phase shift behaves as
SE4UQ) = af 1Q + O(Q?), where aff ¢ is the S-wave
scattering length of K ~d scattering.

The real part of f&

(1.4)

~4(0) is related to af ¢ as

RefE 40) = al 1. (1.5)
Due to the optical theorem the imaginary part of the am-
plitude f&
cross-section off 4(Q) for K~d scattering in the S-wave
state

~4(0) can be expressed in terms of the total
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The r.h.s. of (1.6) can be transcribed into the form
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Hence, according to the DGBT formula the energy level
displacement of the ground state of kaonic hydrogen is
defined by
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These are general expressions describing the energy level
displacement of the ground state of kaonic deuterium.
The paper is organized as follows. In sect. 2 we give the
wave function of the ground state of kaonic deuterium in
the momentum and the particle number representations.
We derive the general formula for the energy level displace-
ment of the ground state of kaonic deuterium in terms of

the amplitude of K ~d scattering for arbitrary relative mo-
menta of the K ~d pair and define the S-wave amplitude
f&4(0) of elastic K ~d scattering in terms of the S-wave
amplitudes of elastic K~p, K~ n and K~ (pn)sg, scatter-
ing, where the np pair couples in the 3S; state with isospin
zero. In sect. 3 we compute the S-wave amplitude of elas-
tic K ~n scattering near threshold. In sect. 4 we derive the
Ericson-Weise formula for the S-wave scattering length of
K~d scattering. In sect. 5 we adduce the general formula
for the S-wave amplitude of elastic K ~pn scattering, sat-
urated by the intermediate two-baryon states NY = nA°,
nX° and pX~. In sects. 6, 7 and 8 we compute the am-
plitudes of the reactions K~ (pn)sg, — NY — K~ (pn)ss,
with the NY pair in the 3P; and 'P; states for NY = nA°,
nX° and pX~ pairs, respectively. We compute the contri-
bution of these reactions to the energy level displacement
of the ground state of kaonic hydrogen. In sect. 9 we com-
pare our results with experimental data on the rates of the
reactions K~d — nA%, K—d — n¥X° and K—d — pX—,
other theoretical approaches and estimate the expected
value of the total width and the shift of the ground state
of kaonic deuterium, which are I'1; = (630 + 100) eV and
€15 = (325 £+ 60) eV. In the conclusion we discuss the ob-
tained result. For the details of calculations we relegate
readers to [11].

2 Energy level displacement and the wave
function of kaonic deuterium in the ground
state

2.1 Energy level displacement of the ground state of
kaonic deuterium. General formula

According to [4-6] the energy level displacement of the
ground state of kaonic deuterium is defined by

Ti d3k d3q
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where we have averaged over polarizations of the deuteron
Ai = 0,£1, & (k) and &1,(7) are the wave func-
tions of kaonic deuterium in the ground state in the
momentum representation and M (K~ (7)d(—q, A\a) —

K~ (k)d(—Fk,\q)) is the amplitude of elastic K—d scat-
tering!. Due to the wave functions @L(k) and ®15(q) the
main contributions to the integrals over k and ¢ ¢ come from

1 Of course, the energy level displacement of the ground state
of kaonic deuterium does not depend on the polarization of the
deuteron and formula (2.1) is valid for a fixed Aq.
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the regions of 3-momenta k ~ 1/ag and ¢ ~ 1/ap, where
1/ap ~ ap ~ 3MeV. Since typical momenta in the inte-
grand are much less than the masses of coupled particles,
mg > my > 1/ag, the amplitude of K ~d scattering can
be defined for low-energy momenta only?2.

In the low-energy limit k, ¢ — 0 the relation (2.1) can
be transcribed into the form [4-6]

Fls 27'('
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where 552‘11) is equal to [4]

5Em) = (2.3)

The correction 5&“’) is universal and related to the smear-
ing of the wave function of exotic atom in the ground state
around the origin r = 0 [4].

For the analysis of the energy level displacement of the
ground state of kaonic deuterium in terms of the K~ N and
K~ NN interactions we suggest the following. According
to [4-6] the energy level displacement of the ground state
of kaonic deuterium can be defined as

i
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where ESS)(ﬁ) = /P2 + (MSS)P is the total energy
of kaonic deuterium in the ground state?, TV is a
4-dimensional volume defined by (2m)*6®)(0) = TV [12]

and T is the T-matrix obeying the unitary condition [12]

T — T =4T'T. (2.5)

Then, |A( ‘5)(P, Ad)) is the ground-state wave function of
kaomc deuterium in the momentum and particle number
representation.

2 Tt is obvious that due to formula (2.1) a knowledge of the
amplitude of K™ d scattering for all relative momenta from zero
to infinity should give a possibility to calculate the energy level
displacement of the ground state of kaonic deuterium without
any low-energy approximation.

3 Here MI(;S) = mg + mgqg + F1s and Eis = —a2u/2 =
—10.41keV are the mass and the binding energy of kaonic deu-
terium in the ground state.

2.2 Wave function of kaonic deuterium in the ground
state

The wave function |Agj)(ﬁ, Aq)) of kaonic deuterium in
the ground state we determine as
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where ®4(k) is the wave function of the deuteron as a
bound np state with a total isospin zero, I = 0, and a

total spin one, S = 1. It is normalized to unity [4]

3 -
| Gl =

The operators cK (kx), a (k:p,ap) and af (ky,0,) create
the K ~-meson, the proton and the neutron and obey stan-
dard canonical and relativistic covariant commutation (for
the K ~-meson) and anti-commutation (for the proton and
the neutron) relations. In appendix A of [11] we show that
the wave function (2.6) describes the np pair in the bound
35, state with a total isospin zero, I = 0. One can show [4]
that the wave function (2.6) is normalized as

2.7)

(40D (P )AL (o)) =
ﬁ)dAéAd'

Using the wave function (2.6) the energy level displace-
ment of the ground state of kaonic deuterium can be

(2r)32E) (P)s®) (P — (2.8)
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transcribed into the form

I, / Bk BK &7 ,(k)D5(K + k/2)
—€15 ti—/—— =

2 @m)® 2B (R2E,(K)
y / d3qd3Q &1,(7)Pa(Q + 7/2)
(2m)° B ()2E,(G)

x(2m)*6 N (K + k- Q@ - ) M(K
K~ (k)p(K,0,))

/ Bk BK &5, (k)P
(2m)S

B (J)p(éa UP) -

—
_|_
~ || =
~
S
~

y / g d*Q ¢1.(7)Pa(Q + 7/2
Cm® 2Bk (@)2E.4()
x(2m)* 6O (K + k= G = Q)M(K~(§)n(@,00) —
K~ (F)yn(K,0,))
/ a3k d3K P, (/2)@;(1? +k/2)
S 2Bk (B)2E,(R)2E, (K +F)

By
/d3qd3cz D1.(7)Pa(@ + 7/2)
V2Ex(@)2E,(G)2E.(G + @)

x M(K™(§)p(@,0p)n(~Q = §,00) —

K~ (k)p(K,0p)n(—K — F,0,))

/d3kd3K &% (k)D%(K + k/2)
V2B, (R)2B, (K +F)

(2.9)

The r.h.s. of (2.9) is expressed in terms of the ampli-
tudes of the reactions K~ p — K™ p, Kn — K™n
and K~ (np)ss, — K~ (np)ss,, where the np pair cou-
ples in the 3S; with isospin zero. In principle, the am-
plitudes of the reactions K™p — K~ p, K n — K™n
and K~ (np)ss, — K~ (np)ss, should contain all correc-
tions caused by QCD isospin-breaking and electromag-
netic interactions and all inelastic channels induced by
both strong, QCD isospin-breaking and electromagnetic
interactions.

We would like to accentuate that the contribution of
the last term in (2.9), describing the transition np — np,
should be dropped, since it corresponds to a disconnected
Feynman diagram of elastic low-energy K ~d scattering.

In order to show this we represent the amplitude of
elastic low-energy K ~—d scattering as

M(K™(@)d(=d. Aa) = K~ (k)d(—k, \a)) =
(K~ (k)d(—Fk A>|T|K<)d< @, M)
A dVT - (210)

The wave function of the state | K~ (kg )d(kq, Ag)) we de-
fine as [12]

|K~ (ki )d(Fa, Aa)) = ¢l (ki) |d(Ka, Aa)), (2.11)
where |d(kq, Aq)) is the wave function of the deuteron in

the ground state, which we take in the form [4-6]
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normalized as
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Following the procedure expounded in appendix A of [11]
of one can show that the wave function (2.12) describes
the np pair in the bound 3S; state with isospin zero, I = 0.

Using (2.12) for the calculation of the matrix elements
of the T-matrix in (2.10), we get

K= (F)p(K,0,)) + \/ 2E4(F)2E4(7)
/ d3K d3Q (K + E/2) ©4(G + 7/2)

PR \E@
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P
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Fig. 1. Feynman diagrams of the reactions, describing the amplitude of low-energy elastic K ~d scattering.

x(2m)* 0K + k- G - §)M(K~()n(@, 00) — xM(K~(7)p(Q,0p)n(=7— Q,00) —
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The amplitude of low-energy elastic K ~d scattering (2.14)
can be represented by Feynman diagrams depicted in
fig. 1. It is seen that the last term is described by the dis-
connected diagram and, therefore, it does not contribute
to the amplitude of K ~d scattering. Dropping this term
the amplitude of low-energy elastic K ~d scattering reads

M(E™(q)d(=q, M) — K~ (k)d(—F, Aa)) =
25,(k)2E4(q)
X/ d3K d3Q (K + E/2) ©4(G + 7/2)
P B R \2ED)
x (2m)?6®) (K+k*qu) (K~ (q)p(@,0p) —
K~ (k)p(K,0,)) + 1/ 2Eq(F)2E4(7)
/ d3K d3Q (K + E/2) ©4(G + 7/2)
P RER) B
x (27)5*) (K+k—Q—q) (K~ (@)n(@,0m) —
K= (F)n(K,02)) + \/2Ea(k)2E4()
y / d3K d3Q @;(I? + E/z)
™ 2B (2B, (F + K)

(2.15)

Now we able to define the S-wave amplitude of elastic
K~ d scattering near threshold.

2.3 S-wave amplitude of elastic K—d scattering near
threshold

From (2.15) the S-wave amplitude of K ~d scattering near
threshold can be defined by

1 1
8T 14+ my/my

BK | Pa(K)[?
X/ (27)% E,(K)

o (0) =

K= (0)p(K,0p)) + —
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K~ (0)n(K,0,)) +
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K_(G)p(Kv Up)ﬂ(—_[?, Un))v

X

1
Xf

(2.16)

where we have averaged over the polarizations of the np
pair in the 3S; state.

In terms of the S-wave amplitudes fJ* P(K) and

o "
S-wave amplitude f£

o 0= +m1K/md / (C;TI; (1 i Ezl(lf%)>

X fa P (K @ a(K))?
1 BK my
1 + mg/mg / (2m)? (1 " M)

*fo< ()| @a(K)?

K) of K—p and K~n scattering, respectively, the
~4(0) reads
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K= (0)p(K,0,)n(—K,00)). (2.17)

The real part Ref& 4(0) of the S-wave amplitude of K ~d
scattering is defined by

1—|—mK/mN
1+mK/md

x(Refe 7(0) + Reff
+Refg *(0),

Refgs 4(0) =

(0))

where we have set m,, = m, = my and denoted

(0) =

(2.18)

Refs*
1 1 / 3K d3Q
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%(K) 24(Q)
VR el
x5 Z ReM (K~ ()@, %)n(—é,on) -

(0p,0n;381)

K~ (0)p(K,0p)n(-K,0,)).

(2.19)

The imaginary part Zmf& ¢(0) of the S-wave amplitude
of K~d scattering is determined by the imaginary of the
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amplitude fI ¢(0) only. This gives

Imfg 4(0) =

RS 1 / dBPK d3Q
167 1+ my/mg ) (2m)3 (27)3

%(K) 24(d)
\/E
< s Z TimM(K <><c§,ap> (~G.on) —

(B) \/E, () E(@
3

(0p,01;381)

K™ (0)p(K,op)n(—K,0y)). (2.20)
We accentuate that the decomposition of the real part of
the S-wave amplitude of K ~d scattering, given by (2.18),
agrees well with that suggested by Ericson and Weise for
the S-wave scattering length of 7w~d scattering [3] and
by Barrett and Deloff for the S-wave scattering length of
K~ d scattering [13].

Thus, for the calculation of the energy level dis-
placement of the ground state of kaonic deuterium we
have to compute the amplitudes of K p, K n and

o "(0), f55M0)

and f& 4(0), respectively. Since the amplitude foK P(0)
has been computed in [6], it is left to compute the real part

of the amplitude f& (0) and the amplitude f5 (0).

K~ (pn)sg, scattering near thresholds,

3 S-wave amplitude of K™n scattering near
threshold

The calculation of the S-wave amplitude f& ™(Q) of K~n
scattering near threshold we carry out following [6]. The
amplitude of low-energy K ~n scattering we represent in
the form

L (K n ) 2005 Q) _
2Z.Q<770 Qe 1) =

R

1 (o)

o "(Q)=

Q)R (3.1)

where nf$ ™(Q) and §& "(Q) are the inelasticity and
the phase shift of low-energy K ~n scattering, which we

describe in terms of 6% ™(Q)p, the phase shift of an

elastic background of low-energy K~ n scattering, and
K n(Q)g, the contribution of the resonances. In the low-
energy limit & "(Q)p = A5 "Q, where AK " is a real

parameter, and

({(7”(0) 7n(O)Rﬂ

Since the state |KK~n) has the isospin one, I = 1, we as-

sume [6] that f& "(Q)r is defined by the contribution of
the X(1750)-resonance with isospin I = 1 and strangeness

= AR "+ f (3:2)
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S = —1, the component of the SU(3)gayour octet [14]%.
The effective Lagrangian of the X (1750) KN interaction
reads [6]

Ly pp(@) = L2 (@)(I7 (2)7°(2) -

92 =— 0 _
+ 52 () A% (2)m™ ()
1

- 5(92 - fz)

where fs and g are the phenomenological coupling con-
stants [6]. The value fo = —go/3 has been fixed from the
experimental data on the cross-sections for inelastic reac-
tions K~ p — Y*rF, K= p — X7% and K—p — A0,
The value go = 1.123 has been calculated from the fit
of the width of the X(1750)-resonance equal to I's, =
50 MeV for mass my, = 1750 MeV [14].

20(x)m™ ()

Vo (x)n(z) K~ (x) + hc., (3.3)

3.1 Real part of ff "(0)r

According to [6] the real part Reff ™
tude f& "(0)g is equal to

(0)g of the ampli-

Refs' "(O)r =
1ps8 g5
drmg 9my, — Mg — MmN

—=0.037fm.  (3.4)

The numerical value is obtained for myx = 494 MeV and
mpy = 940 MeV.

Now we should proceed to computing the contribution
of the smooth elastic background of low-energy K ~n scat-
tering.

3.2 Elastic background of low-energy K—n scattering

Using the results obtained in [6] one can show that the

smooth elastic background AL ™ of low-energy elastic
K~ n scattering does not contain the contribution of exotic
four-quark states ao(980) and f(980) and, as has been
pointed out in [6], can be fully determined within the soft-
kaon theorem and current algebra approach [15-17]. The
result reads [6]
AlB(in _ 1 1 mgmmn

_ 11 — (0.200 £ 0.024) £
87 FE mg +my i

(3.5)

where Fi = 113MeV is the PCAC constant of the K-
mesons [8] and £0.024 fm is an uncertainty of the current
algebra approach [6].

As has been shown in [6] the smooth elastic back-
ground of low-energy K ~n scattering can be also de-
fined by the lowest quark box-diagram depicted in fig. 2,
calculated with the effective quark model with chiral

* For simplicity we denote X(1750) as X, .
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n n

Fig. 2. The quark diagram describing a smooth elastic back-
ground of low-energy elastic K~ n scattering in the effective
quark model with chiral U(3) x U(3) symmetry.

U(3) x U(3) symmetry [18-20]. Using the reduction tech-
nique [21] the amplitude of elastic low-energy K ~n scat-
tering we define as

@2m)* 0@ (¢ +p' —q—p)M(K~n— K™n) =

lim
2
N

) /d4x1d4x2d4:£3d4m4

p'2,p?—my,q'%,q> —>mi

iq"-x1+ip To—ip-x3—iq-x
><eq 1T " T2—1P-T3—1G T4

X (01 + mi ) (Oa + mi)u(p', 0,) (in,05 — my)
X (O T(K ™ (x1)n(z2)n(x3) KT (4))]0)
)

X(*i%ﬁ:ﬁf —my)u(p,on), (3.6)
where n(z) and u(p,0,,) are the interpolating field opera-
tor and the Dirac bispinor of the neutron, and K*(x) are
the interpolating fields of the K F-mesons.

In order to describe the r.h.s. of eq. (3.6) at the quark
level we follow [18] and use the equations of motion

(7,05 — mn)p(a1) = %nnm),

Plas) (—i7, 0 —my) = %wg»

(3.7)

where 7, (z2) and 7, (x3) are the three-quark current den-
sities [18]

M) = —%[de; (wo)y"dj (22) | yuy ur (22),

(
in(ws) = +e95,(20)y" 2" dy (wa) i ()], (3.8)
where 4, j and k are colour indices and 9¢(z) = ¥(x)TC
and C = —CT = —CT = —C~! is the charge conjugate
matrix, T denotes transposition, and gp is the phenomeno-
logical coupling constant of the low-lying baryon octet
Bg(x) coupled to the three-quark current densities [18]

Bg(z)ng(z) + h.c. (3.9

The coupling constant gg is equal to gg = 1.34 X
107* MeV 2 [18].
For the interpolating field operators of the K *-mesons

we use the following equations of motion [18]

(Dl er%()K*(xl) = g—KfL(xl)i'yss(xl),

V2

9K _ . 5
Oy +m2) K1 (24) = Z25(z4)iv u(z ,
(B4 +mE) K™ (24) \/5(4)’7(4)
where g = (m + my)/V2Fk, m = 330 MeV and m, =
465 MeV are the masses of the constituent u, d and s
quarks, respectively [18,20] (see also [22]).

The amplitude of low-energy elastic K ~p scattering is
defined by

(3.10)

1
M(K™n— K ™n) = —i 030%

. " .
X/d4$1d4$2d4$387’q x14ip -T2 —1ip 1317,(]7,,0'7/1)

X (OIT(a(x1)iy° (1)1 (272)775 (23)5(0)ir"u(0)) |0)
xu(p, on), (3.11)

where the external momenta ¢’, p’, ¢ and p should be kept
on-mass shell ¢2 = ¢ = m?% and p'? = p? = m¥%.

In appendix B of [11] we have computed the vac-
uum expectation value. The parameter AX " defining the
smooth elastic background of low-energy K ~n scattering,

is equal to
M(K™n— K™n)

AKfn _
B 8m(mg + my)

= (0.221 £ 0.024) fm. (3.12)

The value of the smooth elastic background of low-energy
K~ n scattering, calculated with the effective quark model
with chiral U(3) x U(3) symmetry, agrees well with that
calculated within the soft-kaon theorem and current alge-
bra approach (3.5).

3.3 Real part of the S-wave amplitude of K™n
scattering near threshold and the S-wave scattering
lengths of K—N scattering with isospin | =0 and 1 =1

Using the results obtained in sects. 3.1 and 3.2 we can
compute the real part of the amplitude f& "(0) of K~n
scattering near threshold

RefE ™(0) = (0.258 £ 0.024) fm. (3.13)

Since the K~ n couples in the state with isospin I = 1,
the real part of the S-wave amplitude f& ™(0) defines
the S-wave scattering length a} of KN scattering with
isospin I = 1: a} = (0.258 £ 0.024) fm. Using the S-wave
amplitude of K ~p scattering, calculated in [6], the S-wave
scattering length a) of KN scattering is equal to: a) =
(—1.221 £ 0.072) fm. The values

ag = —1.221 £ 0.072 fm,
ap = +0.258 +0.024 fm (3.14)

we will use for the numerical calculation of the Ericson-
Weise contribution [3] to the S-wave scattering length of
K ~d scattering.
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f & s
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Fig. 3. Feynman diagrams of the amplitude of the low-energy
reaction K~ (pn)ss, — K (pn)sg, defining the Ericson-Weise
contribution to the S-wave scattering length of K~ d scattering.

4 Amplitude of K~ (pn)ss, scattering near
threshold

The amplitude of K~ (pn)ss, scattering, K~ (pn)ss, —
K~ (pn)ss,, can be represented in the form of two main
contributions: i) the amplitude, defining the S-wave scat-
tering length of K~ d scattering in the Ericson-Weise form,
described by the Feynman diagrams depicted in fig. 3 and
caused by one-kaon exchanges, and ii) the amplitude, de-
fined by the inelastic two-body K~ (pn)ss, — NY and
three-body K~ (pn)ss, — NYm channels, where ¥ =
A%, 30 or X% hyperons.

This gives the following analytical representation of
the amplitude of the reaction K~ (pn)sg, — K~ (pn)sg,:

LS MK O(@ 0p)n(—Gron) —

(O-P7O-7’L7 Sl)

where M(K~pn — K pn)gw reproduces the Ericson-
Weise formula of the S-wave scattering length of K~d
scattering, defined by the one-kaon exchanges, whereas
M(K~pn — K~ pn) is the amplitude of the reaction
K~ (pn)ss, — K~ (pn)sg,, saturated by the inelastic
two-body K~ (pn)ss, — NY with NY = nA® nX% p¥—
and three-body K~ (pn)ss, — NYrm with NYr =
nA%7Y, p AP X070 nXtr pX0n~ pX a0 nXnt
reactions.

4.1 The Ericson-Weise formula for af ¢ scattering
length
In the low-energy approximation the amplitude

M(K~pn — K pn)gw is defined in terms of the
S-wave scattering lengths of KN scattering. For the
calculation of M (K~ pn — K~ pn)gw with the np pair in
the 3S; state with isospin zero, I = 0, we suggest to use
the following effective Lagrangian:

Legi(x) = p(x)(iv" 0 — my)p(x)
+1(2) (98, — ma ()

+ 0, K~ T(x)0" K~ (x)
+ 0, K% (x)0" K°(x) —

—m%i K1

@)K ()
m3 K (2)K°(x)

)
+4ﬂ<1+;”;) B(ag+a0) H(2) K~ (2)p(2)p(x)

N | =

+5(ag — GS)ROT(x)K_(I)ﬁ(x)p(x)
+47r<1 + Z—][\j) |:a1K_T($)K_($)TL((E)ﬂ({IJ)

+

(ab — a) K~ (@) KO@)p(a)n(a)) (42)

DN | =

where a and a} are the S-wave scattering lengths of K N
scattering with isospin I = 0 and I = 1, respectively.

The effective action for the K~ pn — K~ pn transition
in the one-kaon exchange approximation, described by the
effective Lagrangian (4.2), reads

2
—/d4x dyan? (1 + —mK)
mn

x| 2ad (af + a) K~ (@)p(@)p(x)
D10yl

K™ pn
Se(sz " =

< (0| T(K~ ()K" (y))|0)a(y)n(y)
+ (a3 — ab)* K~ (2)p(x)n(x)
x (0| T(K° () K (y)|0)n(y)p(y) |- (4.3)

Since in the case of isospin symmetry the vacuum expec-
tation values of the K-meson fields are equal

(@)K~ T())|0) = (O T(K° () K" (y))|0) =
—idA(z —y) =

/ d4k etk (z—y)
2m)% m% — k% — 0’

the r.h.s. of the effective action (4.3) can be transcribed
into the form

2
ng{ P = i/d4x d*ydm? (1 + @> Az —y)
my

(0| T(K~

(4.4)

% [20d (af +ab) K~ (2) K~ (n)p()p()(y)n(y)

+(ad — ay) K1 (@) K~ (9)p(e)n(z)n(y)p(y)
(4.5)
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Now we have to take into account that the np pair couples
in the 3S; state with isospin zero, I = 0. This can be
carried out by means of a Fierz transformation. Keeping
only the term, describing the np pair in the 3S; state with
isospin zero, we get

(4.6)

As has been shown in [23-26] the nucleon densities
p(x)yun®(y) and n¢(z)y*p(y) have the quantum numbers
of the deuteron. In the non-relativistic limit there survives
only the 3S; component of the np pair, whereas the 3D,
state is suppressed.

In order to understand the quantum numbers of the
components of the tensor nucleon densities p(x)o,,n°(y)
and n°(z)c""p(y) it is convenient to represent the product
of the tensor nucleon densities as follows:

P(x)o,n®(y)ne(y)o" p(e

= 2p(x)y"n®(y) - n(y)y " Tp(x)
) (

) =
1 (y
—2p()777°n (y) - n¢(y)7y°37°p(2),
p(x)on®(y)ne(z)aply) =
—2p(x)7° vn( ) - ne(2)y7p(y)
—2p(x)7°77°n (y) - n¢ (:v) Y°37°p(y). (4.7)

One can show that only nucleon densities p(x)y°yn(y)
and n¢(y)y°¥p(z) have the quantum numbers of the
deuteron. However, the contribution of the *D; compo-
nent enters with the sign opposite to that of the nucleon
densities p(x)y*nc(y) and nc(x)y*p(y). Therefore, they
coincide in the non-relativistic limits. Since the nucleon
densities p(z)v'yv°n(y) and n¢(x)y°9y°p(y) have not
the quantum numbers of the deuteron, we will drop them
from further consideration.

In the low-energy limit, when the masses of nucleons
are much greater their relative 3-momenta, and using (4.7)
we reduce the four-nucleon interaction in the effective ac-
tion (4.6) to the form®

s T =

i/d4xd4y2w2<1+nmf>2(( 0)2 — 4alal — (ad)?)

N
x Az — y) K~ (@) K~ (y)p(x)7nc(2)] - [ne(y)Tp(y))- (4.8)

5 For the derivation of this effective action we have taken
into account that in the non-relativistic limit [5(z)y°¥n°(y)] -

[ (y)y " Fp(2)] — =[B(x)7n ()] - [7°(y)Fp(@)].

Using the effective action (4.8), we obtain the amplitude
of the reaction K~ (pn)ss, — K~ (pn)ss,, caused by the
one-kaon exchanges, with the np pairs coupled in the 3S;
states with isospin zero:

M( ~(0)p(Q, op)n(~Q,00) —
K~ (0)p(K, op)n(—K, 00))pw =
m 2
22 (14 25} () — ol - (ad))

X %
mi + (K — Q)2
x [a(K,0p)7n°(—K,0,)] - [ut(~Q, 0,)7u(@, 0,)]. (4.9)

At low energies the summation over polarizations of the
np pair in the 3S; state gives (see appendix C of [11])

% Z M(K_(O’)p(évap)n(—@,an)a

(Up On)

Wf((_)')p(lg,ap)n(—l?,an))Ew =

2
1ot (1 225 ) () + - (o))
mn
1
X 2—_._,2
my + (K - Q)
Substituting (4.10) into (2.19), we get

o 1 mg \ me\”
o d(O)EWZZ(Hm_d) <1+m—N>
X(( 0)% + 4agay — (a8)2)
BK BQ my
X/FQWP(%ﬂ3ENUa
47 my

+(K-Q)? EN(Q)

The expression (4.11) can be transcribed into the form
suggested by Ericson and Weise [3]

(0 pw = i(l + @)_1 (1 + %f
-@( ) @)

T12

(4.10)

@3(K)

24(Q)-

(4.11)

x((ag)” + 4agag

where 712 is a distance between two scatterers n and p [3].
In our approach (1/r1a) is defined by

1
<—>=/d3w;;(me
T12
mn
9vaBr [ —N ) = 0.29m.,
T 1(mK+2'Yd>

where E(z) is the exponential integral [27], 74 = 1/rq =
0.327m, and ¥,(7) is the wave function of the deuteron
in the ground state in the coordinate representation. We

—MmKT

Wy(r') =

(4.13)
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have restricted the spatial region of the integration from
below by the Compton wavelength of the nucleon [24].
The analogous calculation of the amplitude of 7~ d
scattering [28] in the one-pion exchange approximation
reproduces fully the Ericson-Weise formula [3]

fo(0)ew =

2(1 + Z—Z)l (1 + m—;>2(b3 - 2b§)<é>, (4.14)

where by = (ag V2 2a %)/3 and by = (ag/2 - a(l)/Q)/?)
are the isoscalar and 1sovector S-wave scattering lengths

of mIN scattering, a(l)/2 and ag/Q are the S-wave scattering

lengths of 7NV scattering with isospin I = 1/2 and I = 3/2

and
32w (
<7“12> / il

my
MvaFr [ —N ) = 0.69m,.
d 1<mﬂ+27d>

The numerical value (4.15) agrees well with the Ericson-
Weise estimate (1/r12) = 0.64m, [3].

Since the S-wave scattering lengths a) and a of KN
scattering are equal to a) = (—1.221£0.072) fm and aj =
(0.258 + 0.024) fm (see (3.14)), the value of fi< ¢
amounts to

i H0)pw =

Thus, the S-wave scattering length of K ~d scattering, de-
fined by the Ericson-Weise formula, is equal to

7mﬂ-

() =

(4.15)

(0)ew

(—0.254 + 0.021) fm. (4.16)

1+ mK/mN K- -
K~d _ p K
(ao )EW T 1+ mg/ma (ao tag n)
+ fE 0 pw = (—0.525 £ 0.094) fm.  (4.17)

The total S-wave scattering length af ¢ of K~d scatter-

ing is defined by

a{fﬁd = (aé( d) W+Ref(f(7d(0). (4.18)
The S-wave amplitude fE 9(0) of the reaction
K~ (pn)ss, — K~ (pn)ss, is saturated by the in-

elastic two-body K~ (pn)ss, — NY and three-body

K~ (pn)ss, — NY = channels
K d( )

fK

where we have denoted

( ) (two-body) + fgid(o)(three—body% (419)

"K*d
0 ( two body NYa

Zf
=Z

NYr

4(0) Ny n- (4.20)

fOKi ¢ (0) (three-body)

The contribution of the reactions K~ (pn)sg, — NA%rw
can be neglected due to a smallness of the phase volume.

5 Inelastic two-body channels
K~ (pn)ss, — NY. General formulas

The part of the width s of the ground state of kaonic
deuterium Agg is defined by the decays Axq — NY,
where NY =nA° nX° and pX~—. The other possible two-
body decays as Axq — nA(1405) and Axq — N X(1385)
are suppressed by the phase volume relative to the decays
Agq — nA% nX0 and pX— [29-31].

The contribution of the decays Axq — nA%, nX° and
pX~ to the energy level displacement of the ground state
of kaonic deuterium we take into account by computing
the amplitude of the reaction K~ (pn)ss, — K~ (pn)ss,,
defined by the inelastic channels K~ (pn)sg, — NY —
K~ (pn)ss,, where NY = nA% nX? and pX~. At thresh-
old in the reaction K~ (pn)ss, — NY the NY pair can be
produced in the 3P; and 'P; state.

The amplitude of low-energy K~ (pn)ss, — K~ (pn)ss,
scattering, caused by the contribution of two-body inelas-
tic channels K~ (pn)ss, — NY — K~ (pn)ss, with the
NY pair coupled in the 3P; and 'P; state, we define as [4]

-,

MK~ (0)p(@.0p)n(=@,00) —

K~ (0)p(K, 0p)n(~K,0,)) =
/ d3k;1 d3ks
271' 32E (27T)32EA0(]{32)

(27r)36(3)(k:1 + k)
E, (k1) 4+ Epo(ks) — 2my —
x Y ME (0)p(@,0p)n(—Q,0n) —
(a2,a1;3P1)
n(ky, 00)A° ks, az); >Py)
x M (n(ky, 1) A° (kg az) —
K= (0)p(K,0,)n(—K,0,); °P1)
(27m)32E, (k1) (2m)?2E 50 (k2)
(27)36® (ky + ks)
By (k1) + Exo(ky) — 2my — mg — i0
X Z M(K_(a)p(é,ap)n(—é, on) —
(a2,0133P1)
n(El,al)EO(Eg,ag);?’Pl)
x M (n(ky, 00) X0 (kg, ag) —
K= (0)p(K,0p)n(~K,0,);°P1)
+/ a3k, q d3ks 4
(27)32E, (k1) (27)32E s (k2)
(2m)36® (ky + k)
Ey(ky) + Ex- (ky) — 2my — mg — i0
x Y ME (0)p(@,0p)n(—Q,0n) —

(az,0133P1)

mg — 10
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p(k1, 01) 27 (ka, a2); *P1)
x M p(El,anz-(Emaa
K= (0)p(K, op)n(—K,07); *Py)
/ d3k; d3ks
+ = =
(27)32E,, (k1) (27)32E 4o (ko)
(27)36®) (ky + k)
En (K1) + Eqo(ks) — 2my — my — i0
x> ME0)p(@,0p)n(—q,0n) —
(az,01;1P1)
n(l;hal)/l (kQ,CYQ) Pl)
xM(n(kl,ozl) (k‘z 042)
K= (0)p(K, op)n(—K,07); ' Py)
A3k d3ks
Ny
(2m)32F, (k1) (2m)32E 50 (k2)
(2m)36®) (ky + ky)
En(E1) + EEO(E2) —2my — mg — 10
X Z M(Ki((_)‘)p(@’a O'p)n(_@7 O'n) -

(ag,a1;1Pq)
n(ky, 01) 5% (kz, a2); 'P1)
XM(n(klaal)E (/fz,OQ)
K= (0)p(K,op)n(—K,0,); 'P1)
3 3
. / Eh dhy
(27)32E, (k1) (27)32E ;- (ko)
(27)36®) (ky + k)
Ey(ky) + Ex- (k) — 2my — mg — 40
x Y MK (0)p(@,0p)n(—@,00) —

(2,013 Py)
plky, 01) 57 (ka, a2); ' Py)
< M (p(ky,01) 5~ (ka, 2) —
K= (0)p(K,0p)n(—K,00); 'Py),

X

(5.1)

where we have neglected the contribution of a kinetic en-
ergy of a relative motion of the np pair.

The real and imaginary parts of the S-wave amplitude

fE74(0), caused by the intermediate states (NY)sp, and
(NY)1p,, we determine as

Refg (0) vy opy) =

1 1 1
5127741+mK/md§ Z Z

(0p,0n;381) (a2,a1;3P1)

k 1
><,P/ EN(k')EY(k) EN(IZ) + Ey(/;) —2my — mg

BK d4(K) o .
X‘/ 3 EN(K)M(K (0)p(K7O—p)n(*K,O’n) —

Ref({(id(o)(fvy;lpl) =

1 1 1
5127r41—|—mK/md§ Z Z

(0p,0n;381) (2,131 Py)

3k 1
><,P/EN EY( )EN(E) y(E)—QmN—mK

‘/ dSK did M(K Op(K,op)n(—K,0,) —

2); 'P1)|

—

N(E,0)Y (—F, o (5.2)

where P means the principle value of the integral, and

Imfy 40) vy epy) =
1 1 1
512m3 1 4 mK/md 3

(0p,0n;381) (a2,a1;3P1)
a3k

x [ — 2% 5B

| EE e

BK d4(K) o .
X‘/ 3EN(12)M(K (O)p(K,op)n(—K,0,) —

—

N(E, )Y (—k, a3); *Py)

Imfs 0)nyop,) =
1 1 1
P 3 2 X
5 T + mK/md 3 (Up7o'n§3sl) ((¥27a1;1P1)
X/Law (k) + By (k) — 2my — mx)
B (k) By (1) N Y My — MK
dSK P K S -
‘/ il >M<K‘(0>p<K7op)n<—K,on)ﬁ
En(K)
. 2
Nk on)Y (—k, as); 'Py) (5.3)
The amplitudes M(K’(@)p(l_(',ap)n(f[_(',on) —

N(k,oq)Y(—F,a3)) we suggest to compute within

the approach developed in [19].

6 Amplitude of reaction

K=(pn)ss, — nA\® — K= (pn)ss, and the

energy level displacement

The amplitudes of the reactions K~ (pn)sg, — nA°, where
nA® pair is coupled in the 3P; and 'P; states, we define
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Fig. 4. Feynman diagrams describing the effective coupling constant of the transition nA° — K ~pn in the one-pseudoscalar-

meson exchange approximation.
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M(K~

n(k,oq

(_)')p(lz,op)n(—laan) —

. A3
AO(—F, az);%Py) = —iC 0 R

w(—K,0,)7u(K, 0p)] - [a(—k, a2)775uc(k, a1)]

X
K2 + ial, KK

I W e
L= 3rpany

(nA%%Py)
K*(pn;?’lsl)(ko)’

M(K7 (6)p([_('a o'p)n(_]?, O'n) —
n(ky @) A°(—F, ag); 1Py) = —iC A7 P)

X

K= (pn;3S1)

« [dc(_[_('v an)'?u(f?, Up)] : [’L_L(—E, a2)70?75uc(]27 041)]
1— grtat, K2 +iat K

x };’f‘((;;?gl)(ko), (6.1)

where af,, = (5.424 £ 0.004) fm = (3.837 % 0.003) m;*

and rf, = (1.759 4 0.005)fm = (1.244 £ 0.004) m;

are the spin-triplet S-wave scattering length and effective
0.

range of np scattering in the 3S; state [9]; f[(?_/l(p’fgsl)(ko)

is the amplitude of the final-state nA® interaction near

threshold of the reaction K~ (pn)ss, — (nA%)x and

c(mA%X) o the effecti li tant of the t
K- (pn;381) 1S € errective COup lng constant o e tran-

sition K~ (pn)ss, — (nA%)x, where X =3Py or 'P;.
The spinorial wave functions of the (np)ss,, (NY)sp,
and (NY)1p, states are analysed in appendix C of [11].

. . nA°
6.1 Effective coupling constant CK_pn
In the one-meson exchange approximation [19] the effec-
tive coupling constant of the transition nA® — K~ pn is
defined by the Feynman diagrams are depicted in fig. 4.
Following [19], the amplitude of the transition nA® —
K~pn [11], computed near threshold, we define by the
local effective Lagrangian®
nA’ K pn
Ly @) =
2 (3-20)(2a—1)%giny
\/§m%( - (EAO — mN)2 + k‘g
1 ~( N5 A0 -
)iy’ A% (x)][n(x)n(x
()i A @) [A()n()
1 (3—-20)(20 = 1)g3 vy
\/§m%( — (EAO — mN)2 + k%

1 5 - 510 —
my +my +mg [ﬂ(.’L‘)’L’y A (x)}[p(x)n(x)]

+ 1 (3 - Za)ggngN
V3T — (B —mn)? 4 K2
! [7(2)in® 4° ()] [p()n(x)

mjo +my + mg

5 The analytical expression of the Feynman diagrams in fig. 4
can be found in [11].

4 aa—lginy
VBm2 = (By —my)* + 1
L - 0 N
@A @) [p()i7 (@)
+ i (3 - 2a)g7?1)-NN
VBmZ = (BEy —mx)? + K
my + Mg — mao
m?\, — (EAO — TI’LK)2 + k%
x[n(a) A° ()] [p(x)iv n(z)]
_ 1 (3 —2a)ginn
V3mZ — (En —mn)? + kg
my +mg — myo
m?\, — (EAO — mK)2 —+ ]{3(2]
x[p(a) A° ()] [A(x)iv n(z)]
+i aa —1)g3 vy
VBm2 = (By —my)* + 1
L - 0 —(Nin D
—p——— [p() A" ()] [n(2)iv n(z)]
2 a(3-40)(3 —2a)g5 vy
3vV3m2 — (Ex —my)? + k3
1 — _ .
Ay pr——— [p(x) A° ()] [ (2 )iy n ()]
1 (3-22)(3—4a)%¢yNn
3\/§ m% - (EN - mN)2 + k‘%
my +mg — myo
m3 — (B —mi)? + k3
x[p(a) A° (a)] [a(x)ir ()],

where” Eq0 = ((mg 4+ 2mpy)? + m%, — m%)/2(mi +
2my) = 1262MeV, Ey = ((mg + 2mn)? + m% —
m%)/2(mk + 2my) = 1108 MeV and ky = ((2my +
mg)? — (mapo + ma))V2((2my + mg)? — (mpo —
my)?)2/2(2my +mg) = 592 MeV are the energies and
the relative momentum of the A°-hyperon and the neu-
tron at threshold. Then, for numerical calculations we set
grnN = 13.21 [32] and o = 0.635 [33] (see also [19]).

Now we have to take into account that the np pair
couples in the 3S; state with isospin zero. This can be
carried out by means of Fierz transformation:

() A @) ()] —

~ (Pt @) 4 )]

+ {lp)on @) (2)o 2 A(a),
A 2] pw)n()] —

X

(6.2)

+ 2P @)t A )
- S @0 @) ()07 2 w),

" The index P means that there are no scalar-meson ex-
change contributions.
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p() (@) () )] —
ﬁ[ () yun (@) ()7 A0 x)]

+3 [P( 2)oun (@)][ne(2)o" 7 A% (@),

A )]
— JP)nt @)y 4 )]

1

— 3 P@)on (@)][ne(z)o" 7 A% ()], (6.3)

In the non-relativistic limit the r.h.s. of these products can
be reduced to the form

[p(2)y° A% (@)][a(x)n(x)] —

i@ @7 40

— Py (@)] - [ @ 3 4],
1)y 2 ()] ()] —

— 1Py ()] - e()7° 4°)]

+ 7 [P (@)] - [ (@374 ))
() 2@y n(a)] —

— 1P @)] - ()74 4°()]

— 1Py @)] - (e A @),
() 4° @) [p(a ) Pn()] —

+ 3 [p@)nc ()] - () A a)]
P @) @A) (64)

For the derivation of this Lagrangian we have taken into
account that in the non-relativistic limit the four-baryon
product reduces as follows:

()70 (2)] - [n¢(2)7°7° A% (2)] —

[p(a)7n°(2)] - [n(2)7°97° A° (2)].
The effective low-energy four-baryon interactions
[p(@)yne(z)] - [n¢(@)77°A%(z)] and  [p(z)Tnc(z)] -

[ne(z)y°§v°A°(z)] describe the transitions (nA%)sp, —
K~ (pn)sg, and (nA°)ip, — K~ (pn)ss,, where the nA°
pair couples in the 3P; and 'P; state, respectively.

6.2 Reaction (nA%)3p, — K~ (pn)sg,

The amplitude of the reaction (nA%)sp, — K~ (pn)sg,,
where nA° pair couples to the np pair, which is in the 3S;

state, is defined by

. ~(nAY3
on(— R By) =

a(f?,apwuc<—f(,an)] [ue(k, a1) 7P u(—k, az)]

L1t gt K2 gt
1 rnpanpK iaj,, K

(nA%3Py)

x [0 (ko). (6.5)

(nAO;3P1)
where fK_(pn;ssl)

nA% rescattering in the P; state near threshold of the

K~ (pn)ss, system production and C I? A(pnP?%) ) is the ef-

(ko) is the amplitude, describing the

fective coupling constant of the transition (nA%)sp, —
Ki(pn)le.

Using (6.4) and (6.2) we obtain the effective La-
grangian of the transition (nA%)sp, — K~ (pn)ss, near
threshold:

A — K~ (pn.>S;
,Ci?f Py o )(x)PZ

APy - = = c s -
iy (pn3S)1 KT (@)[p(x)n(2)] - [n°(x)77° A% ()],
(6.6)
where we have denoted®
nA”;°Py
CE{ (anS) y = L7 x 10" 6 MeV 3. (6.7)

The Lagrangian (6.6) describes the interaction of the nA°
pair in the 3P; state with the np pair in the 3S; state
through the emission of the K ~-meson.

Using the results obtained in [6] one can show that the
contribution of the resonances A4(1405) and X'(1750) to the
effective coupling constant of the transition nA° — K~ pn
is negligible small.

In fig. 5 we have depicted Feynman diagrams describ-
ing the contributions of the scalar mesons. The effective
Lagrangian of the transition nA° — K~ pn, caused by the
scalar-meson exchange, is equal to

£?(Ao (2)s = 1 1 (3*20‘)972rNN
pn 2V3 gaFr mi; — (Ego —mn)? + k3
x[p(x)in® A% (z)][A(z)n(x)]
1 1 (3 —20)g2 NN
2V/3 gaFxm2 — (Ex —mn)? + k3
x[p(x) A° ()] [7a(2)iv"n(x)]
I 1 (3—20)(3—4a)g2yy
6v/3 gaFr m2 — (En —my)? + k§
x[p(2) A° (z)][A(z)iv>n(z))]
1 (3—2a)g2yy
\/ﬁgAFW m,%. — (EN — ’fTLN)2 + k%
x[A(x)A° (2)][p(x)irn(x)).

(nA%3pPy)
K~ (pn;3S1)

(6.8)

8 The analytical expression of C' can be found

in [11].
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Fig. 5. Feynman diagrams describing the contribution of scalar mesons to the effective coupling constant of the transition
nA® — K~ pn in the one-pseudoscalar-meson exchange approximation.
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) K A K-
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Fig. 6. Feynman diagrams describing the (nA%)sp, rescattering in the initial state of the reaction (nA°)sp, — K~ (np)sg, -

The effective coupling constant of the (nA%sp, — 6.3 Amplitude of nA? rescattering in the 3P; state
K~ (pn)ss, transition, induced by the scalar-meson ex-
changes, reads®

The amplitude f I((an (221;31) (ko), describing the rescattering
nA%;3P _ _ S1
5027(1,”;313)1) =-13x10"°MeV~?. (6.9)  of the nA® pair in the 3P; state near threshold of the

K~ (pn)ss, system production, is defined by the Feynman
0.3 . . . .
Thus, the total effective coupling constant C«;LA °P1) ¢ diagrams depicted in fig. 6'°. The result of the calculation

— 77/'3 . . .
the (nA%)p, — K~ (pn)sg. transition, is equal t(g 81) of these diagrams reads (see appendix E in [11] and [19])
1 1 b

(nA%3P,) s 3 ‘f(nAO;SPl) (k )‘ _
AT = 4% 107 MeV S, (6.10)  |[fx (s (ko
Cpao(*P1) k3 E(ko) + k -
The contribution of the scalar mesons we have computed '{1 — /1102( 5 ) T ]2 [ln < E( k;O) + k0> — iw] }
in the infinite mass limit. This corresponds to the non- m (ko) (Ko) — ko
linear realization of chiral symmetry [34] used within ~1, (6.11)

ChPT by Gasser and Leutwyler [35].
Now we proceed to computing the amplitude of the  '© Within the dispersion relation approach the final-state in-
nA° rescattering in the 3P, state. teraction of the baryon-baryon pairs (or baryon-baryon rescat-

tering in the initial state) has been elaborated by Anisovich et
is given in [11].  al. [36].

(nA%3Py)

9 The analytical expression of §C K (pn:381)
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where E(ko)

= k2 +m% and the effective coupling
constant C), 4o (3P

1) is equal to [19]
297TNN %
(3 - 200 n (1+ K)

k2
—a(3 - 4a )ggngvl <1+m) —
n

2.0 x 107+ MeV 2.

Cppo(®Py) =

(6.12)

The rescattering of the nA% pair in the 3P; state is defined
by the interaction, computed in the one-meson exchange
approximation (see [19]):

(nA%)3

‘Ceff (LE) =
1

= Cnao (PO (@)77n" (@)] - [n°(2)77° A% ()] (6.13)

Pl‘)("AOhPl

For the derivation of the effective Lagrangian (6.13) we
have used the relations

[A°(2)y° A% ()] [A(x)y°n(z)] =
+ @0t @)] - @)y
+§[A (P70 @)] - (e A @) +
() n(e)] [y 4°(0)] =
+ @ @) [

A ()]

" A% (x)]

Los = c
+ 442370 (@)] - [0 (@) "7 AN @)] + -+ (6.14)
caused by Fierz transformation.
6.4 S-wave amplitude £ 94(0) mpo;3p,) of K—d
scattering
For the calculation of the S-wave amplitude

fg_d(O)(nAo;spl) of K~d scattering near threshold,
caused by the exchange of the nA° pair in the 3P, state,
we have to square the spinorial wave functions of the
coupled baryons and to sum over polarizations, taking
into account that np and nA° pairs are in the 3S; and P
state, respectively. This yields (see appendix C of [11])

1 - - .
5 > > aE o)t (-K o)
(0ps0n;381) (a2,a1;3P1)

[ (R, a0) i u(—F, an)] P = 222

(6.15)

First, let us compute the imaginary part of the ampli-
tude f& 4(0)(na0:2p,). From (5.3) and taking into ac-
count the result of the summation over polarizations of

1 For simplicity we use the equal masses of baryons for the
calculation of the rescattering of the nA° pair, where mp =
V(2mn +mg)? — 4k2/2 = 1030 MeV.

baryons (6.15) we get
1 1

Iy’ Oy = 51 o
kg (nAO 3P1 TLAO 3P1 2
X o e (K omiote } 752 ity (o)
BK by(K 2
/ d(K) ' (6.16)
2m)3 1 — frzpaprKQ zaﬁlpK

where we have integrated over k. The integral over K can
be calculated analytically and result reads

/ PBK P4(K)
(2m)3 1 — 3rt at, K2 —iat, K

abyq

L ab b2 n b a? In a
i 2 " ln— 1| =
b—a\b?—~3 v a®—77

(0.030 + 40.061) m>/2, (6.17)
where we have denoted
1 2rt
CL:t—(l— 1-— tp> :0327mﬂ—,
Thp ahy
1 2rt,
b= 1+4/1— i P =1.280m,. (6.18)
np np

Thus, at threshold the imaginary part of the S-wave am-
plitude of K~d scattering, caused by the two-body in-
elastic channel K~ (pn)sg, — (nA%)sp, — K~ (pn)sg,, is
equal to
Imfg (0)naosp,) =

3 k?’

Mn

1
4.6 x 1073
3n2 14+ mg/mq2my +mK

(nA%3Py) (nA%3Py) o
{C zm;sl)} ‘fK (pn3181 (ko) -

0.9 x 1073 fm.

(6.19)

The real part of f({{_d(O)(nAO;Spl) is defined by

1 1
2567r3 1+ mx/ma

1
X3 2 > 27r /EN K Epo (k

(Up On; 351 (041 04273131)

1
X = =
EN(]C)+EA0(]€)72’/TLN — Mg
‘/ d3K @d (K) - .

0 J—
Ex(i) M (n(k,aq1)A°(—k,
K= (0)p(K,op)n(—K,

Refg(id((])(n/lo;spl) =

) —

2

on); °P1) (6.20)
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The real part of the integral over k is divergent. For the
regularization of the divergent integral we introduce the
cut-off A. Subtracting the divergent part and keeping the
finite part dependent on the cut-off A the result of the

integration over k reads'?

1 / d’k 1 _
27 EJQV(E) EN(E)-FEAO(E)—QTI’LN—WLK—Z'O
m™mpg

{2 ( A > 2 ko
———({ —arctan [ — | — ———
2mp+mi | T mpg Tmpg

A + ko
mBJr\/AQer?V m3+\/kg+m2B
xIn T i =
m3+\//12+m23 N mBJr\/szrsz

S = (LR (6.21)
21—|—mK/2mB mB mp '

where mp = \/(2my + mx)? — 4k%/2 = 1030 MeV. For
numerical analysis we set A = my'3

Hence, at threshold the part of the S-wave amplitude
of K ~d scattering, caused by the two-body inelastic chan-
nel K~ (pn)sg, — (nA%)sp, — K~ (pn)sg,, reads

RefoKid(O)(nAoppl) =46x1073 9.2
m3 ko [ (nA%)sp, r
1+mK/md1+mK/2mB K= (pni®S1)

)s Ak
fK pnzlsl)(ko)’ F(70) =

mp mpg
—0.1 x 1073 fm. (6.22)

The S-wave amplitude fg(id(O)(nAO;Bpl) of K—d scat-

tering, caused by the two-body inelastic channel
K~ (pn)sg, — (nA%)sp, — K~ (pn)sg,, results in
fE9(0) (naospyy = (—0.1+0.9) x 1072 fm.  (6.23)

Now we proceed to computing the S-wave amplitude
JE 4(0)(nao,1p,) of K~d scattering near threshold, sat-
urated by the intermediate (nA%).p, state.

12 We assume also that after the subtraction of the diver-
gent part the integrand is a peaked function around the point
En(k) + EAo(k) —2my — mg = 0, i.e. around |k| = ko.
That is valid for the imaginary part of the S-wave amplitude

fol(id(o)(n/]o;(ipl). Due to this assumption we can take away

the squared amplitude of the reaction K~ (pn)sg, — (nAO)sp1
at |k| = ko.

13 We assume that the cut-off A = my is an universal cut-off
for the analysis of low-energy interactions of the deuteron near
threshold. We relegate the readers to sect. 4, the analysis of
the Ericson-Weise formula for the S-wave scattering length of

K~ d scattering, and [24,28].

6.5 Reaction (nA%):1p, — K~ (pn)ss,

The amplitude of the reaction (nA%):p, — K~ (pn)sg, is
defined by

y [ﬂ(lz,op);y’uc(—lz on)] - [u_c(l; a1 )77 u(—Fk, )]
1—rtat K2 +ial, K

np“np
f;;m(ngl (ko), (6.24)
where f nA(pnP;S)l (ko) is the amplitude, describing the n.A°

rescattering near threshold of the K~ (pn)sg, system pro-
duction, and C' (nA 1338) ) is the effective coupling constant

of the transition (n/l Jip, — K~ (pn)ssg, .
The effective Lagrangian of the transition (nA%)1p, —
K~ (pn)ss, at threshold can be defined by

_ Z.C(nAU;lpl)

K= (pn;381)

H(@)[p(x)7n° ()] - [n°(2)7°F7° A% (). (6.25)

0.1p VK (pn:®
‘C((;fA i P1)— KT (pn; Sl)(:c)

x K~

nA Pl) . 14
K- (pn 5g,) 19 equal to

The effective coupling constant o
(n/lo;lpl)

-7 -3
L iy = 6 x 1077 MeV 2,

(6.26)
The effective coupling constant (6.26) contains the con-
tribution of the scalar-meson exchanges computed in the
infinite mass limit.

The Lagrangian (6.25) describes the interaction of the
nA® pair in the 'P; state with the np pair in the 3S;
through the emission of the K ~-meson.

6.6 Amplitude of (nA%):p, rescattering

The amplitude f, "~ (nA Pl)(ko), describing the rescattering
of the nA® pair in the 'P, state near threshold of the
K~ (pn)ss, system production, is defined by the Feynman
diagrams analogous to those depicted in fig. 6. The result

of the calculation of these diagrams reads (see appendix E
in [11] and [19])

(n/l py) ) .
(zm 3S1) B

-5 b))
~ 1,

(nA%tPy)

' The analytical expression of CK*(pn':‘Sl)

is given in [11].
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where E(ky) = \/k3 + m%'® and the effective coupling
constant C(,, 10)(*P ) is equal to [19]
(3 — 20)29xAN gann In

4k3
1+ —°>
12k2 ( 2

4k2
—a(3 - 4a )g”g?Nl (1+m> _
n

2.0 x 1074 MeV 2.

Chpo(*Py) =

(6.28)

The rescattering of the nA® pair in the 'P; state is defined
by the interaction, computed in the one-meson exchange
approximation (see [19]):

0.1p Vs (nA0:1
Eé?f/l i P1)—(nAY Pl)(l,) _

A (2)7°77°n¢ ()]
[ne(2)7° 97" A° ()]

1
— 1 Cnae ('Py
(6.29)
Now we can proceed to computing the S-wave amplitude

f({(d(O)(nAogpl) of K~d scattering near threshold, satu-
rated by the intermediate (nA%).p, state.

6.7 S-wave amplitude fX
scattering

_d(O)(n,\o;1p1) of K—d

For the the
f()K_d(O)(nAo;lpl) of K~d scattering near threshold,
caused by the inelastic channel K~ (pn)sg, — (nA%).p, —
K~ (pn)ss,, we have to square the amplitude (6.24) and
to sum over polarizations of baryons, taking into account
that np and nA° pairs are in the 3S; and 'P; state,
respectively. This yields (see appendix C of [11])

calculation  of S-wave amplitude

(Upvgn) (04270‘1?1131)
el 05,5 7 264 5
ek, )y 7y u(—k,az)]‘ = 3 myk’. (6.30)
At threshold the imaginary part of the S-wave amplitude
of K ~d scattering, caused by the two-body inelastic chan-

nel K~ (pn)sg, — (nA%):p, — K~ (pn)sg,, is equal to

Imfe 0)naopp,) =
1 3 k3
46 x 1073 Moy
672 1+ mg/mg QmN—i—mK
(nA%tPy) (nA%tP
X[ K- (P";Sl} ‘ pn‘”’lSl) ) =

1.0 x 1073 fm. (6.31)

15 For simplicity we use the equal masses of baryons for the
calculation of the rescattering of the nA° pair, where mp =
V(2mn +mg)? — 4k2/2 = 1030 MeV.

The real part of f‘g(id(o)(nAO;lpl) reads

3
My

2472 1+ mg /my

Ref(frd(o)(mw;lpl) =4.6x 1073

xgk?’ [ (nA%'Py) r
1+mK/2mB Kﬁ(pn?:isl)
(nA%1Py) 2 A ko \
X| e oy (ko) F<m—Bm—B =
—0.1 x 107 fm. (6.32)
Thus, for the S-wave amplitude fol(id(o)(n/l())lpl we get
FE 1 0) naoap,y) = (—0.1 +i1.0) x 10~ fm.  (6.33)

Now we can estimate the contribution of the two-body
inelastic channel K~ (pn)sg, — nA’ — K~ (pn)ss, to
the S-wave amplitude f&< ¢(0),, 10 of K ~d scattering near
threshold and the energy level displacement of the ground
state of kaonic deuterium.

6.8 S-wave amplitude fX ¢(0),r0 and the energy level
displacement

The S-wave amplitude of K ~d scattering saturated at
threshold by the intermediate nA° state in the 3P; and
Py is equal to the sum of the contributions (6.23)
and (6.33)

FE74(0) 00 = (=0.2 +41.9) x 1072 fm. (6.34)

The contribution of the decay Axq — nA° to the energy
level displacement of the ground state of kaonic deuterium
amounts to
AO
(n A0 (nA”)

T o
—") 4 182 = 602f54(0),,10

= (—0.1+il.1)eV. (6.35)

Hence, the partial width of the decay Axqy — nA° is equal
0
to FI(ZA ) =2.26V.
According to [31], the experimental rate of the produc-
tion of the nA°% pair at threshold of the reaction K ~d —
nAY is equal to R(K~d — nA®) = (0.387 £ 0.041)%.

Using our estimate of the partial width, Fl(;mo) =
2.2eV, and the experimental rate, R(K~d — nA%) =
(0.387 + 0.041)%, we can estimate the expected value of
the total width of the energy level of the ground state of
kaonic deuterium

F("AU)

Fls = Ls
(0.387 = 0.041) x 10-2

= (570 £ 130)eV. (6.36)
‘We have taken into account the theoretical accuracy of the

energy level displacement, which is about 20%: e(le )+

i) /2 = (—0.10 £ 0.02) + i(1.10 + 0.22) V.

Our expected value of the total width of the ground
state of kaonic deuterium is by a factor of 2 smaller com-
pared with the value of the total width predicted by Bar-
rett and Deloff [13].
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Fig. 7. Feynman diagrams describing the effective coupling constant of the transition nX° — K~ pn in the one-pseudoscalar-
meson exchange approximation.
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Fig. 8. Feynman diagrams describing the contribution of scalar mesons to the effective coupling constant of the transition
nX° — K~ pn in the one-pseudoscalar-meson exchange approximation.

7 Amplitude of reaction
K= (pn)ss, — nX® — K~ (pn)ss, and the
energy level displacement

The amplitudes of the reactions K~ (pn)sg, — (nX°)x,
where nX° pair couples in the X = 3P; and 'P; state, we
define as

MK~ (O)p(K, op)n(~K, 0) —

7 7 f 0.3
n(k, 01) X0(—F, az); *Py) = —iC L0 By

[ue(—K, 00)7u(K, 0,)] - [a(—k, a2)77u(k, a1)]

_ 1ot ot 2 | iqt
1 27'npanpK —l—za,npK

X

(nX°%P1)
K- (pnissy) (o),

M(K~(0)p(K,o,)n(-K,0,) —
g 0 g 1 . (nZO;lPl)
n(k,a1)X%(=k, ap); " P1) = —iC};

X

~(pn;3S1)
iR o0w3u(R, 0,)] - [0(-F, 095" ()]
1— %TflpaflpKz + iaflpK

(nx%'Py)

X K*(pn;gsl)(ko)’

(7.1)

where fi(?_z(;i;(gsl)(ko) is the amplitude of the final-

state nX? interaction near threshold of the reaction

K= (pn)ss, — (nX%x and C’gl,z(z;fg)sl) is the effective

coupling constant of the transition K~ (pn)sg, — (nX°)x,
where X = 3P; or 'P;.

nx!’

7.1 Effective coupling constant CK_pn

In the one-meson exchange approximation [19] the effec-
tive coupling constant C’I’f(;m of the transition nX0 —

K~ pn is defined by the Feynman diagrams depicted in
fig. 7. The analytical expression of the amplitude of the
transition nX° — K ~pn, determined by the Feynman di-
agrams in fig. 7 is given in [11].

The Feynman diagrams, describing the transition
nX° — K~ pn through the scalar-meson exchanges, are
depicted in fig. 8.

Taking the amplitude of the transition nX° — K~ pn
at threshold, we can represent it in the form of the effective
local Lagrangian

.
R OTE

e — [p(x)in® 2° ()] [A(x)n ()]

(2a — 1)39§NN 1
m% — (Exo —mn)? + k3 mx +my + mg
x[A(x)iy® 20 (x)][p(x)n(x))
1 (20 —-1)(3—20)%g3 vy !

3m% — (Eso —mn)? + k3 mpo + my + mg
x[A(x)iy” 20 (a)][p(x)n(z)]
A= a)Ra— Dgann 1

m2 — (Ex —mn)?2 + k¢ ms +my +mg
x () 2°(2)][p(2)irn(z)]
3 22— 1)g2 yn my +mg —mxy

mz = (BEx —mn)? + kg m% — (Exo —mg)? + kg
x () 2°(2)][p(2)irn(z)]

(20— 1)y N my +mg —msy

m3 — (BEx —mn)? + kg m% — (Exo —mg)? + k3
x[p(2) 2°(2)][A(z)ir " n(z)]
2 a3 —2a)g3 vy my +mg —my

3mi — (Ey —mn)? + ki m§ — (Exo — mx)? + k3

+
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x[p(2) Z° (2)][a(x)iv°n(z)]
_ 2a(2a —1)(3 - 2a)gdyy 1
Sm% - (EN —mN)2+k:(2)mg—|—mN+mK
x[p(x) 2°(a)][A(2)ir°n(z)]
1 (3 —40)% g3y N my +myg —ms
3m2 — (Exy —mn)* + k& m3, — (Exo —mg)? + ki
x[p(2) 2°(x)][A(2)iv n(z)]. (7.2)
The effective Lagrangian of the transition nA° — K pn,
caused by the scalar-meson exchanges, is equal to

1 1 (2a—1)g2yn
2gaF: m3% — (Exo —mn)? + k3

x[p()iy® X0 (x)][a(z)n ()]

1 Fg (2a—1)g2yn
2gaF2m2 — (Exy —mn)?+ k3

x[p(a) 2° ()] [a(x)iy n(z)]

1 Fr (20 =1)(3 —4)g2ny
6 gaF2m2 — (Ex —mn)? + kg

X [p(2) S (@) [A(2)ir ()

_ _Fx (20— 1)g2y
gaF2m2 — (Exy —mn)? + k2

x[(x) £ ()] [p(x)ir n(z)]. (7.3)

Making the Fierz transformation (see (6.3)) we reduce the
four-baryon operators to the form

[p(2)y° 2 (@)][a(z)n(x)] —

+ 4 [P)n @)] - ()3 5°)]

0
Ly pn(@)s =

+ 7lp()ine @) - [ 57 5 )],
p() S (@) () n()] —

- Pl @) - ()71 2 )

— {IP)ne (@) - (7@ 5" @),

+ 7 [p@)Fn @) - [n°(2)7°37° 20 ()],
These relations make a projection of the four-baryon
states onto the 3S; ® 3P; and 3S; ® 'P; states. Taking
into account the relations (7.4) we can extract from the
effective Lagrangian (7.2) the effective interactions, re-
sponsible for the transitions (nX%)sp, — K~ (pn)sg, and
(nX9):1p, — K~ (pn)ss, with the nX? pair in the 3Py and
1P, state.

(7.4)
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7.2 Reaction (nX%):p, — K~ (pn)ss,

The amplitude of the reaction (nX%)sp, — K~ (pn)sg,,
where the nX0 pair in the 3P; state couples to the np
pair in the 3S; state, is defined as

M(n(kaal)zo 7];7 0[2) -
(0)p(

— n 0.3
K~ (0 P aap)n(_K?Un);3Pl) = zC;{?(p’n};lS)l)
(R 0p)Fu (=K, 00)] - [ue(F, 1)y u(—F, 02)]
1— 3rtat, K2 —iat K

(nx°3Py)

x K*(pn;?’Sl)( O)’

(7.5)

(nx%3Py)
where fK*(pn;‘gSl)

nXO rescattering in the P, state near threshold of the

(nx%3Py) ..
K*(pn;;sl) is the ef-

fective coupling constant of the transition (nX°)sp, —
K~ (pn)ss, -

Using (7.2) and (7.3) we obtain the effective La-
grangian of the transition (nA%)sp, — K~ (pn)sg, near
threshold:

ﬁggzo;gpl)ﬂK’ (pn;asl) (

(ko) is the amplitude, describing the

K~ (pn)ss, system production, and C

IO K @) [pla)nt ()] - [ ()47 20 (). (7.6)

The effecti li tant €2 P ] tol6
€ errective Coup 1ng constan K*(pn;381) 1S equa 0]
(nx%3pPy) _7 3
Curit) = 7 x 107 MeV P, (7.7)

where Exo = 1302MeV, Ex =
516 MeV.

The amplitude f(nzo;apl) (ko), describing the rescat

b K~ (pn;38,) \K0)> e i

1072MeV and kg =

tering of the nX° pair in the 3P; state near threshold
of the K~ (pn)ss, system production, is defined by the
Feynman diagrams depicted in fig. 6 with a replacement
A% — X0 and reads (see (6.11))

nX0:32p;
’ff((*(pnﬁs)l)(k())’ =

- e g [ (B i) -}
~ 1, (7.8)

where E(ko) = \/k +m%!™ and the effective coupling
constant C),x0(3P1) is equal to

Cosn (1) = (20— 12988 1 (14 2o
nzol t1) = e 4k32 . m?

2 2
9xNN 4kg
3—4 n(l4+— )=
+ of ) 612 n( m2>

n
0.7 x 107" MeV 2. (7.9)

16 The analytical expression in given in [11].

17 For simplicity we use the equal masses of baryons for the
calculation of the rescattering of the nX° pair, where mp =
V(2mn +m)? — 4k2 /2 = 1070 MeV.
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The rescattering of the n. X9 pair in the 3P, state is defined
by the interaction, computed in the one-meson exchange
approximation (see [19]):

e
1 o s .
_7C7LEO (3P1)[EO( )77571’ ( )] : [nc

b EO)

()7 (7.10)

In our approach the effective Lagrangian (7.10) describes
also the final-state (nX?)sp, interaction near threshold of
the reaction K~ (pn)ss, — (nX0)sp,.

7.3 S-wave amplitude fi
scattering

_d(O)(nzo;:ipl) of K—d

The amplitude fI ¢
to fgid(o)(n/ﬂ)#ﬁpl). The summation over polarizations of
the coupled baryons is defined by (6.15). This gives the
imaginary part of the amplitude f(‘)K_d(O)(nEU;B»pl) equal
to

(0)(nx0;3p,) can be computed similar

Imfe 0)nxop,) =

3 3
m;, kg

1
4.6x 1073

3 21+mK/md2mN+mK
<[es

(nx°;3Py) } ‘
1.9 x 1073 fm.

nZ]O )

K—pn fK (pn; 3S1)

(7.11)

The real part of fg(id(())(ngoppl) reads

Ref({(id(())(nxo;;’.pl) =
1 m
12721 +mK/md

k2 [
Xi
1+mK/2mB
2 A
f(nE 3py) (k?o)‘ F( ’ ko ) _
mp mp

(pn;3S1)
0.05 x 1073 fm,

3
s

4.6 x 1073

(n°3p) 12
K~ (pn;381)

(7.12)

where A = my and mp = \/(QmN+mK)2
1070 MeV.

The S-wave amplitude ff ¢(0)(,50.:5p,) of K~ d scat-
tering near threshold, caused by the two-body inelastic
channel K~ (pn)sg, — (nX%sp, — K~ (pn)sg,, is given
by

—4kZ)2 =

FE0) (nxosp,y = (0.05+41.90) x 107 fm.  (7.13)
Now we proceed to computing the S-wave amplitude
f({rd(O)(nzo;lpl) of K~d scattering near threshold, sat-
urated by the intermediate (nX°)1p, state.
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7.4 Reaction (nX%):1p, — K~ (pn)ss,

The amplitude of the reaction (nX%)ip, — K~ (pn)sg, is
defined by
M(n(k,01)X°(—k, az) —
K~ (0)p(K,0,)n(—K,0,); 'Py) = ch “P1)
(

(pn;3S1)

Lo, o) u (- K o) [ue(, a1)77°u(—F, as)]
1— grtal, K? +iat K
n 0;1
PR s (ko). (7.14)

The effective Lagrangian of the transition (nX%)ip, —
K~ (pn)ss, at threshold can be defined by

‘C(”EO;lPl)HK_(P";sSO( ) —

eff
»01p, =, C
iC B K (@) [p(a)n® ()]
[ (2)7°77° 2 ()]
Using the effective Lagrangians (7.2) and (7.3), and the
prescription for the projection of the four-baryon opera-

tors onto the 2S; ®3P; and 3S; ®'P; states (7.4) we obtain

. . (nX%1Py)
the effective coupling constant C'.~ (pn:381) equal to

(7.15)

C(’I’LA Pl)

7 —
L iy = =2 X 107" MeV ™

(7.16)

The Lagrangian (7.15) describes the interaction of the
nX° pair in the 'P; state with the np pair in the 'S;
through the emission of the K ~-meson.

7.5 Amplitude of (nX%):p, rescattering

The amplitude f Kn Epn Pl)(ko), describing the rescattering
of the nX° pair in the 'P; state near threshold of the
K~ pn system production, is defined by the Feynman dia-
grams analogous to those depicted in fig. 6. The result of

the calculation reads (see appendix E in [11])

nE Pq1) o
s (pnssn(k(’)’ -
L Cuso(Py) kg [ (E(ko)+ko\ . -t
2471’2 E(ko) E(k’o) - k’o
~1, (7.17)

where E(ky) = /k2 +m%'® and the effective coupling
constant C(nAO)( Pl) is equal to

Crx0(*P1) = Clpaoy(*P1) = 0.7 x 107*MeV 2. (7.18)

18 For simplicity we use the equal masses of baryons for the
calculation of the rescattering of the nA° pair, where mp =
V(2mn +m)? — 4k2/2 = 1070 MeV.
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The rescattering of the n X9 pair in the 3P, state is defined
by the interaction

0.3 0.3
E((;f'LfE P1)—(nX?% Pl)( ) _

1

1 wx0 (PP1)[20(2)77 0’ (z)] - [ne P50 (x)).

()7 (7.19)

The amplitude f({(_d(o)(nzo;lpl), caused by the interme-
diate (nX%).p, state we define as follows.

7.6 S-wave amplitude fi
scattering

_d(O)(nIO;lpl) of K0d

The result of the summation over polarizations of inter-
acting baryons is given by (6.30). Hence, at threshold the
imaginary part of the S-wave amplitude of K ~d scatter-
ing, caused by the intermediate (nX%)sp, state, is equal
to

Imfg(id(())(nzogpl) =
3 3
461078 ™ Ro
672 1+mK/md 2my +mg
(nx:'p (nx0;! 2
X|: K- (pn 3181 :| ‘fK (pn381 ) =
0.1 x 1073 fm. (7.20)

The real part of f({rd(O)(nAo;lpl) reads

RefoKid(O)(nAo;lpl) =
1 m3 k2
2472 1 +mg/mg 14+ mg/2mp

[C(n/lmpl) } ‘f("/lmpl) (ko)‘2F<A,ﬁ> =

4.6 x 1073

(pn;3S1) K~ (pn;3S1) mpg’ mpg

2 x 1076 fm. (7.21)

Thus, the S-wave amplitude f(f{_d(O)(nEo;lpl) of K—d
scattering, caused by the two-body inelastic channel
K= (pn)ss, — (nX%1p, — K~ (pn)sg,, is equal to

FEH0) (nxoap,y = (0.02+41.00) x 107* fm.  (7.22)

Now we can estimate the contribution of the two-body in-
elastic channel K~ (pn)sg, — nX° — K~ (pn)sg, to the
S-wave amplitude f& ¢(0) of K ~d scattering near thresh-
old and the energy level displacement of the ground state
of kaonic deuterium.

7.7 S-wave amplitude f{ 4(0),50 and the energy level
displacement

The S-wave amplitude of K~d scattering at threshold,
saturated by the inelastic channel K ~(pn)sg, — nX% —
K~ (pn)sg, with the nX pair in the 3Py and 'P; state, is
equal to the sum of the contributions (7.13) and (7.22)

fE4(0),,50 = (0.05 4 i2.00) x 1073 fm. (7.23)
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The contribution of the decay Axq — nAY to the energy
level displacement of the ground state of kaonic deuterium
amounts to

(nx%) o
+i—ts = 602fK

(0.03 +i1.2) eV.

(nX%)

—€1s d(())’ﬂzo =

(7.24)

Hence, the partial width of the decay Axq — nA° is equal
0
to MM = 2.4eV.
According to [31], the experimental rate of the produc-
tion of the nX° pair at threshold of the reaction K ~d —
nX0 is equal to R(K~d — nX") = (0.337 £ 0.070)%.

0
Using our estimate of the partial width, Fl(:E e

(2.40 £+ 0.48) eV, where £0.48¢V is a theoretical accu-
racy of the result, and the experimental rate, R(K ~d —
nX0) = (0.337 £ 0.070)%, we can estimate the expected
value of the total width of the energy level of the ground
state of kaonic deuterium

=
(0.337 + 0.070) x 102

= (700 4 200) eV. (7.25)

Fls:

This value is compared well with our estimate Ijs =
(570 + 130) eV, which we have made in sect. 6 using
the theoretical value of the partial width of the decay
Agq — nA® and the experimental rate of the nA® pro-
duction in the reaction K ~d — nA°.

8 Amplitude of reaction
K= (pn)ss, — pX~ — K~ (pn)ss, and the
energy level displacement

The amplitudes of the reactions K~ (pn)ss, — (pX7)x
where the p X~ pair couples in the X = 3P; and 'P; state,
we define as

—

M(E~(0)p(E, op)n(~K,0,) —
p(k, a1) X~ (—k, a2); °Py) = —ZCI?E(ME&)
LR 0n VR, )] - [1(-F, 0077w (F, 00)

_ 1t gt 2 ¢
1 rnpanpK +iay,, K

P
x I(? (pn 381)(k0)

M(K~=(0)p(K,o,)n(—K,0,) —
p(k, a1) X~ (—k, a0); 'Py) = ZC’;?E(W 381)
[JC(—K%WU(I? op)] - [a(—k, a2)y°375uc(k, a1)]

_ L1t gt K2 '
1 rnpanpK +iay,, K

X

(P27§1 1

P1)
X fiepnsssy) (Ko),

(8.1)

where f}?Z(pn)?sl)(kO) is the amplitude of the final-
state pX~ interaction near threshold of the reaction

K~ (pn)ss, — (pX~)x and lez(pf3s)

tive coupling constant of the transition K~ (pn)ss, —
(pX~)x, where X =3P or 'Py.

is the effec-
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Fig. 9. Feynman diagrams describing the effective coupling constant C;;E_;n of the transition p¥~ — K pn in the one-

pseudoscalar-meson exchange approximation.
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Fig. 10. Feynman diagrams describing the contribution of scalar mesons to the effective coupling constant of the transition
pX)~ — K pn in the one-pseudoscalar-meson exchange approximation.

- 3

8.1 Effective coupling constant Ciz_pn W) (20— 1)giyn ;
mgr — (EN — mN)2 + kO

The transition pX'~ — K~ pn, induced by the one- my +mg —my

pseudoscala.r—meson exc-hangg, is defined by the set -of X m%, — (Bx— —mg)? + k2

Feynman diagrams depicted in fig. 9. The Feynman dia-

grams for the transition pX~ — K~ pn, determined in the x[p(x) X~ ()] [p(x)iy’p(z)]

one-pseudoscalar-meson approximation with scalar-meson 3

exchanges, we adduce in fig. 10. In the momentum repre- — /2 (1 —a)(2a = Dgryn

sentation the amplitude of the transition pX'~ — K pn, m2 — (Ex —my)? + kg

determined by the Feynman diagrams in fig. 9, is given 1

n [11]. Near threshold of the transition pX~ — K pn X [p(z) X~ ()] [ (x)ivp(z)]

the set of diagrams in fig. 9 we represent in the form of My +my +mi

the local effective Lagrangian N 2V/2 a(3 = 20)g% nn

3 m% — (EN 77’TLN)2 +k%

£ ) = 1

V3 (2a = 1)°g3 vy e ——— [p(2) £~ (x)][A(2)ir°p()]
m2 — (Ey- —my)? + k2
i 1( ) . V2 (20— Dgsnw
s + My + M [A(x)in® 2~ (2)][p(2)p(x)] 3 m2 — (Ex — my)? + k2
V2 (20— 1)(3 —2a)%¢3\ N my +mg —ms
3 mi — (Bg- —mn)? + K m3 — (Ex- —mg)? + k2
e [0(@)n 5 ()] [p(e)p()] X[a(@) 2 (@)][p@)ir ()]
e 1 2/ 00— 1)(3- da)gdyy
G <(z’; )gﬂjvv)]ngk? 3 mj — (En —mn)?+k§
mi — —m 0
my+mg —my X 1 [ﬁ(m)x_ (J:)][i)(x)z,)ﬁp(x)]7 (82)

m% — (B —mg)? + k2 s MmN

x[(x) 2 (2)][p()ir"p(2)]
(1-a)(2a—1)gny
2v2 z
MR e
1 The effective Lagrangian of the transition pX~ —

= - =) inB
X s + My + M [1(z) 27 (z)][p(2)iv’p(z)] K~ pn, defined by the Feynman diagrams in fig. 10 with

where Ey- = 1302MeV, Ey = 1072MeV and ky =
516 MeV.
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the scalar-meson exchanges, is equal to

Loy " s =
11 (20— 1)g2yy
\/igAFw m%( — (ng — mN)2 +k8
x[(x)in® 2~ (x)][p(2)p(x))]
. 11 (20— 1)g2yn
V2 gaFrm2 — (Ex —my)? + k§
x[(x) 2~ (2)][p(2)ivp(x))]
11 2a-1)B- 4a)gZy N
3v2 gaFr m3 — (Ex — mn)? + kg
x[A(x) X (2)][p(2)iv’p(x)].

Recall that the contribution of the scalar mesons is com-
puted in the infinite mass limit corresponding to the non-
linear realization of chiral symmetry. The effective La-
grangians defining the transitions (pX'~ )sp, — K~ (pn)ss,
and (pX~)ip, — K~ (pn)ss, can be derived from (8.2)
and (8.3) by means of the Fierz transformation (see (6.3)

(
and (6.4))
[n(z)

(8.3)

(0)° T @ [pp()] —
+ ) @)] - [ (@7 5 (@)
— @A @) [ @5 ()]
(7(2) 2~ (@)][pla)r*pla)] —
— @ @] @ 5 @)
—gmmm%ﬂ[*<w772<ﬂ
p() 2~ )] [ae)*p(a)]
+ 2 ) @)] - [ (@7 2 (@)
I R@W @) FE I @] (84)

Substituting (8.4) into (8.2) and (8.3), we obtain the
effective Lagrangians responsible for the transitions
(pX~)sp, — K~ (pn)ss, and (pX~)1p, — K~ (pn)sg,.

8.2 Reaction (pX~)sp, — K~ (pn)sg,

The amplitude of the reaction (pX~)sp, — K~ (pn)ss, is
defined by

M(p( 5041)27(7163042) -
> b))
K (0)p Kvap)n(iK Uﬂ) ) C;? (pn3sz)
[ oy P (R, )] - [, 007y u(—F, )]
1-— fr%pa%pfﬁ ial, K

X
1 i (ko). (8.5)

where f(PE(pn Eéi)(k()) is the amplitude, describing the

pX~ rescattering in the P, state near threshold of the

105

(pn Eé)) is the ef-

fective coupling constant of the transition (pX~)sp, —
K~ (Zm)ssl :

The effective Lagrangian of the transition (pX~)sp, —
K~ (pn)sg,, computed at threshold, reads

K~ (pn)sg, system production and c'r P

— B3P Y LK (pn3
Lgpz PP1)— K (pn; Sl)(x)

p=
Py — — = C
iCPE T K () ()7 ()
(@)’ 2 ()] (8.6)
The effective coupling constant C’(p > pnfé)) is defined
by [11]
3P,
CEE R = T x 107 MeV T, (8.7)
The amplitude f(pz_;SPl) (ko), describing the rescatter-
p K—(pn;3S1)\F0 ) g

ing of the pX~ pair in the 3P; state near threshold of the
K~ (pn)ss, system production, is defined by the Feynman
diagrams similar to those depicted in fig. 6. The proce-
dure of the calculation of these diagrams is expounded in
appendix E in [11]. The result of the calculation reads

(2>
’f )

{195 g (3328 )
~ 0.6, (8.8)

VK2 +m%1 and the effective coupling
1) is equal to

ko’f

where E(kg) =
constant Cp5;- (°P

g'n'NN 4k;j
—(1 - In{l+ —
(1-a) 2k3 ( + mﬂ)

4k
+a(3 - 4a)gg2’2Nl (1+m—0>:
n

—4.0 x 1074 MeV 2.

CpZ'* (SPI) =

(8.9)

The rescattering of the pX~ pair in the 3P; state is defined
by the interaction, computed in the one-meson exchange
approximation

(px~;®
Lo
1

1 Coz- CP)[E™ (2)77°p"(2)]
o) 2 ()],

We would like to remind that the interaction (8.10) defines
also the final-state (pX~)sp, interaction near threshold of
the reaction K~ (pn)sp, — (X~ )sp,.

P1)—>(z)27;3P1)($) _

(8.10)

19 For simplicity we use the equal masses of baryons for the
calculation of the rescattering of the pX'~ pair, where mp =
V(2mn +m)? — 4k2/2 = 1070 MeV.
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8.3 S-wave amplitude fi
scattering

_d(O)(pz—;3p1) of K—d

The amplitude fI

way similar to fOK
The result reads

4(0)(ps-2p,) can be computed in a

_d(O)(nAo;Spl) and fé{_d(())(nzo;?,pl).

FETA(0) s opy) = 4.6 x 1075 L
0 EETERY 372 1+mg/mg

(=~ (T~ °P1) 2
{C (om; 381 ] ‘fK (pn;Sél)(ko)‘
LB (A kY, R )
41—|—mK/2mB mB’mB 2my + mg o
(0.02 4 40.7) x 1072 fm. (8.11)
Now we proceed to computing the contribution of the re-
action (nX%)1p, — K~ (pn)sg, .
8.4 Reaction (pX~)1p, — K~ (pn)ss,

The amplitude of the reaction (pX~)ip, — K~ (pn)ss, is
defined by

M(p(k, 1) S~ (—k, az) —
K (Op(R, op)n(~ K, 0n); "P1) =IO Y
[a K, 0,)7u¢(—K,0,)] - [0e(, a1)77 u(—k, as)]
l—frflpat K? +ial, K
x I(?Z:(pn Ssz)(ko) (8.12)

The effective Lagrangian of the transition (pX~)ip, —
K~ (pn)ss, at threshold can be defined by

Ei};fﬂf;lPﬂ—*K*(pn;g’Sl)(x) _
iCPE e K () [ (2) 3¢ (@)
!

K- (pn 351)
~(2)

Using (8.2), (8. 3) and (8.4) we compute the effective cou-

P1)
K- (zm 381)°

(a8 (8.13)

pling constant o It is equal to
(nA%'Py)

-7 -3
L iy = —12x 1077 MeV 2,

(8.14)
The Lagrangian (8.13) describes the interaction of the
pX~ pair in the 'P; state with the np pair in the 'S;
state through the emission of the K ~-meson.

8.5 Amplitude of (pX~):p, rescattering

The amplitude fl(( (om; SS))

tering of the nX° pair in the 'P; state near threshold of

(ko), describing the rescat-
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the K~ pn system production, is given by (see appendix E

n [11])

iy (ko) | = )
- C”iéff” st = (i) 1) )
~ 0.8, (8.15)

The effective coupling constant C,x- (*P1) is equal to

Cps-("P1) = Cpy-(PP1) = —4.0 x 107" MeV 2. (8.16)
The rescattering of the pX~ pair in the *P; state is defined

by the interaction

E(;&E*;lpl)ﬂ(pz‘*;lpl)(x) _
1 = L 5 c
~1 po- ("P[E ()97 p ()]

()7 2 ().

Recall that according to [19] the effective coupling con-
stant Cpx- (*P1) is computed in the one-pseudoscalar-
meson exchange approximation.

(8.17)

8.6 S-wave amplitude fi¢
scattering

7d(0)(pz—;1P1) of K—d

The S-wave amplitude f(frd(O)(ijlpl) of K~d scatter-
ing near threshold, caused by the reaction K~ (pn)ss, —
(pX~)1p, — K~ (pn)ss,, is equal to

_ 1
K~d -3
fo (O)(pz‘—;lpl) == 46 X 10 6?

: o) ]

x—m” { (P
1+mK/md K- (pn381

ML k3 A ko) k3 B
41+mK/2mB mB mp 2my +mg B
(0.05 4 41.8) x 1072 fm. (8.18)

Now we can compute the contribution of the two-body
inelastic channel K~ (pn)ss, — pX~ — K (pn)sg, to
the S-wave amplitude fd ¢(0),x- of K ~d scattering near
threshold and the energy level displacement of the ground
state of kaonic deuterium.

8.7 S-wave amplitude X 9(0),z- and the energy level
displacement

The S-wave amplitude of K~d scattering at threshold,
saturated by the inelastic reaction K~ (pn)ss, — pX~ —
K~ (pn)ss, with the pX~ pair in the 3P; and 'P; state,
is equal to the sum of the contributions (8.11) and (8.18):

FE4(0),5- = (0.07 +142.5) x 1072 fm. (8.19)
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The contribution of the decay Axq — pX~ to the energy
level displacement of the ground state of kaonic deuterium
amounts to

o 1—,(7120) o
—eltT ) i = 602/ (0)so =

(0.04 +i1.5) eV. (8.20)

Hence, the partial width of the decay Axq — pA~ is equal
to Fl(fz ) =3.0eV.

According to [31], the experimental rate of the produc-
tion of the n XY pair at threshold of the reaction K ~d —
pX~ is equal to R(K~d — pX~) = (0.505 + 0.036)%.

Using our estimate of the partial width, I'\*¥ ) =

(3.0£0.6) eV, where £0.6€eV is a theoretical accuracy of
the result, and the experimental rate, R(K~d — nX°) =
(0.505 % 0.036)%, we can estimate the expected value of
the total width of the energy level of the ground state of
kaonic deuterium

re™
(0.505 = 0.036) x 102

= (590 £ 130)eV. (8.21)

Fls:

This value is compared well with our estimate I =
(570 £ 130) eV and I'1s = (700 £ 200) eV, which we have
made in sects. 6 and 7 using the theoretical values of the
partial widths of the decays Axq — nA® and Agg — nX°
and the experimental rates of the nA° and no® production
in the reactions K~d — nA° and K—d — nX°.

9 Comparison with experimental data and
the energy level displacement

The imaginary parts of the amplitudes fOK ~4(0)ny with
NY = nA% nX° and pX~ are proportional to the cross-
sections for the reactions K~d — nA°, K~d — nX° and
K~d — pX~ near threshold. According to the experimen-
tal data by Veirs and Burnstein [31], the production rates
of NY pairs in the reactions K=d — nA%, K—d — nX°
and K—d — pX~ are equal to

R(K~d — nA®) = (0.387 4 0.041)%,
R(K~d — nX°) = (0.337 + 0.070)%,
R(K~d — pX~) = (0.505 + 0.036)%,
R=> R(K~d— NY)=(1.22940.090)%.  (9.1)
NY
The ratios, independent on a total yield, read
R(K~d — nA°)
A%/ 50 = = (1.15+0.2
R = Ri=a =m0y — (119£027),
. R(K~d—nX"%
X0/%7) = = (0.6840.1
REZ/E7) = pigao sy — (068015,
_ R(K—d — nA®)
A/ = = (0.77 £0.10). 2
RUAY/ET) = pigg o pry = O77£010). (92)
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For these ratios we predict the following theoretical values:

050 _ Zmfe” O)nao _
R(A°/5°) = T 1.0+ 0.3,

0 -\ Imf({{id(o)nzo N
R(X°/x7) = In a0 v 0.8+0.2,
R(A°/x7) = Imfe “Onae _ o540, (9.3)

B Imf({(id(o)pﬂf

The theoretical predictions agree well with the experimen-
tal data.

We would like to emphasize that according to the re-
quirement of isospin invariance the ratio R(X°/X~) of
the cross-sections for the reactions K—d — nX° and
K~d — pX'~ should be equal to

R(X°/X7) =0.5. (9.4)

We would like to notice that the strength of the forces
responsible for the transitions K ~d — nX° and K—d —
pX'~ is of order of a strength of the forces violating isospin
invariance. Indeed, relative mass differences of the neutron
and proton (m, —m,)/my = 0.138% and the charged and
neutral K-mesons (mgo —mg-)/myg = 0.607% are of or-
der of the production rates of the NY pairs near threshold
of the reactions K ~d — NY. Therefore, a departure from
the isospin invariance for the ratio of the cross-sections of
the reactions K ~d — nX° and K~d — pX~ should not
be a surprise [31].

The contribution of the inelastic two-body channels
K~d — NY to the energy level displacement of the
ground state of kaonic deuterium is given by

A0 ['(nAO) o
—en ) i = 6020 (0)a0 =
(=0.10 £ 0.02) 4+ i(1.1 £ 0.2) eV,
30 F(nEO) JO
—e{" )+z’—132 = 602K (0,150 =
(+0.03 £ 0.01) 4+ i(1.2 + 0.3) eV,
_ F(PE_) o
—e T it = 602/ (0)r =

(40.04 + 0.01) 4+ i(1.5 £ 0.3) eV.

(9.5)
The partial widths I 1(ivy)7 equal to
r” = (2.2+05)eV,
F("EO) _
) — (24+05)eV,
") = (3.04+0.6)eV, (9.6)

compare well with the theoretical estimates discussed by
Reitan [30]:

F(:AO)
0.66eV < <r11("20)

> < 190eV,

0.66eV < I'"* ) <3956V,
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The S-wave amplitude f§ %(0)(two-body) of K~d scat-
tering near threshold, caused by the two-body inelastic
channels K~d — NY — K~d with the intermediate
NY =nA% nX0 and pX~ states, is equal to

f({(_d(o)(two-body) =

(—0.08 £0.02) +4(6.4 £ 0.8) x 1073 fm.  (9.8)
The energy level displacement of the ground state of
kaonic deuterium caused by the inelastic two-body decays
Agg — nA% Agg — nX° and Axgqg — pX~ is equal to

(two-body) F(two-body) —
—€1g Vi Ls 2 = 602f0 (O)(two—body) =

(—0.05 + 0.01) 4 (3.9 + 0.5) eV. (9.9)

Using the experimental value of the total production rate

R = (1.229 £+ 0.090)% and our theoretical prediction for
r f;wo-bOdY), given by (9.9), we can estimate the expected
value of the total width of the ground state of kaonic deu-

terium

NY
Fls — ZNY Fl(s : _
(1.229 £ 0.090) x 10—2

0 0 oy
LSS S Sl

(1.229 £+ 0.090) x 10—2
7.8+ 1.0

(1.229 4 0.090) x 102

= (630 + 100) eV. (9.10)

This value agrees well with the estimates (6.36), (7.25)
and (8.21).

Following the estimate of the total width, based on
the theoretical values of the widths of the decays Axq —
nA® nX° and Axq — pX~ and the experimental rates
of the reactions K~d — nA°, K~d — nX° and K—d —
pX~, we can estimate the expected contribution of the
three-body decays Axa — NY 7 to the shift of the energy
level of the ground state of kaonic deuterium. We get

elthreembody) _ (g 4 gy eV, (9.11)
This implies that the contribution of the inelastic chan-
nels with two-body K~d — NY — K ~d and three-body
K~d — NYrn — K~ d intermediate states to the real part
of the S-wave amplitude of K ~d scattering near threshold
is negligible small, and the real part of the S-wave am-
plitude of K~d scattering near threshold is fully defined
by the Ericson-Weise formula for the S-wave scattering
length (4.17). This gives the following value for the shift
of the energy level of the ground state of kaonic deuterium:

sy F e = (325 £ 60) eV
(9.12)

Thus, we predict that the S-wave amplitude of K ~d scat-
tering near threshold is equal to

€15 = —602(af ?)

K74(0) = (—0.540 4 0.095)4i(0.521 + 0.075) fm. (9.13)
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This defines the energy level displacement of the ground
state of kaonic deuterium

I, _
ey 271 = 602K 4(0) =

(—325 4 60) + (315 & 50) V. (9.14)

A confirmation of these estimates should go through
the calculation of the contributions of the reactions
K~ (pn)ss, — NY = to the amplitude of low-energy elastic
K~ d scattering.

10 Conclusion

The quantum field-theoretic and relativistic covariant ap-
proach, developed in [4-6] for the description of the en-
ergy level displacement of the ground and excited states
of pionic hydrogen [4,5] and the energy level displacement
of the ground state of kaonic hydrogen [6], has been ap-
plied to the analysis of the energy level displacement of
the ground state of kaonic deuterium and the S-wave am-
plitude of elastic K ~d scattering near threshold.

According to [4-6] we have represented the energy level
displacement of the ground state of kaonic deuterium in
terms of the momentum integrals of the amplitude of elas-
tic K~d scattering for arbitrary relative momenta of the
K~ d pair weighted with the wave functions of kaonic deu-
terium in the ground state. The knowledge of this ampli-
tude should allow to compute the energy level displace-
ment of the ground state of kaonic deuterium without any
low-energy approximation. As has been shown in [4-6] the
low-energy reduction of our representation of the energy
level displacements of exotic atoms reproduces the well-
known DGBT formula with additional corrections caused
by the smearing of wave functions around the origin. Such
a smearing is defined by the relativistic factors, related to
the recoil energies of the nuclei [4]. These corrections are
negative and of order 1%. They are universal for all ex-
otic atoms, the existence of which is caused by Coulombic
forces. Since the experimental accuracy of the measure-
ment of the energy level displacement of the ground state
of pionic hydrogen, reached recently by the PSI Collabo-
ration [37], is of order 1%, the corrections, obtained in [4],
play an important role for the correct extraction of the
S-wave scattering lengths of 7V scattering from the ex-
perimental data on the energy level displacement of the
ground state of pionic hydrogen [38].

Since the experiments on the energy level displacement
of the ground state of kaonic deuterium are in the stage
of preparation, for the analyses of the energy level dis-
placement of the ground state of kaonic deuterium, we can
neglect the correction of order of 1% and use the DGBT
formula.

In the analysis of the energy level displacement of the
ground state of kaonic deuterium using the DGBT for-
mula the main object of the theoretical investigation is the
S-wave amplitude f& ¢(0) of K ~d scattering near thresh-
old. As has been pointed out by Ericson and Weise [3]
for the analysis of elastic low-energy 7~ d scattering, the
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S-wave scattering length of m~d scattering can be rep-
resented in the form of the superposition of the S-wave
scattering lengths of 7~ p and 7~ n scattering, realizing
so-called the impulse approzimation, and the term, de-
scribing elastic m~pn scattering.

Following Ericson and Weise [3] and assuming that at
threshold the S-wave amplitude of K ~d scattering is de-
fined by the superposition of the S-wave amplitudes of
K~p and K~ n scattering, reproducing the impulse ap-
prozimation, and the S-wave amplitude of the three-body
to three-body reaction K~ (pn)ss, — K~ (pn)ss,, where
the np pair couples in the 3S; state with isospin zero, we
have introduced the wave function of the ground state of
kaonic deuterium and the wave function of the deuteron in
the momentum and the particle number representation in
terms of the operators of creation of the K ~-meson, the
proton and the neutron. In appendix A in [11] we have
shown that these wave functions describe the bound K ~d
state and the bound np state with quantum numbers of
the deuteron.

We have shown that due to such a representation of
the wave function of the deuteron, the S-wave ampli-
tude of K ~d scattering at threshold can be represented
in the Ericson-Weise form. The real part of the S-wave
amplitude of K ~d scattering contains two terms, defined
by the S-wave amplitudes of K ~p and K n scattering
near threshold, and the terms coming from the interac-
tion of three-body scattering K~ (pn)ss, — K~ (pn)ss, .
The imaginary part of the S-wave amplitude of K ~d scat-
tering near threshold is fully defined by S-wave amplitude
of three-body scattering K~ (pn)ss, — K~ (pn)ss,. The
amplitudes of elastic K~p, K~ n and K~ (pn)sg, scatter-
ing are weighted with the wave functions of the deuteron
in the momentum representation.

We would like to accentuate that the Ericson-Weise
form of the S-wave scattering length of 7~ d scattering
has been derived within a potential model approach. We
have proved this form within the quantum field-theoretic
approach [28] and have derived the K ~d version of this
formula. The main object of the Ericson-Weise formula,
(1/r12), where 1/r12 is the inverse distance between the
proton and the neutron averaged over all positions of
them [3], we have computed equal to (1/r12) = 0.69 m. for
7~ d scattering [28] agreeing well with the Ericson-Weise
value (1/r12) = 0.64m, [3].

We have shown that in the case of K~d scatter-
ing the Ericson-Weise term, caused by elastic three-body
K~ (pn)ss, scattering, is defined by the S-wave scattering
lengths of KN scattering a) and a} with isospin zero and
one, respectively, al for I =0 and I = 1. In our approach

the real part RefI£ 4(0) of the S-wave amplitude of K ~d
scattering near threshold is defined by the Ericson-Weise
kind expression and the contribution of the inelastic chan-
nels of three-body reaction K~ (pn)ss, — K~ (pn)sg,.

The term of the Ericson-Weise formula, defining the
impulse approximation, takes the form of the superposi-

p

tion of the S-wave scattering length aér of K~ p scat-

tering and the S-wave scattering length aff "™ of K~ n
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scattering. The S-wave scattering length aé( P of K7p
scattering has been computed in [6].

For the calculation of the S-wave scattering length
al’ ™ of elastic K~ n scattering we have followed [6]. We
have represented the S-wave amplitude of K~ n scatter-
ing near threshold in the form of the contribution of the
X~ (1750) resonance and the smooth elastic background.
In our approach [6] the smooth elastic background is given
by the contribution of defined by the low-energy interac-
tions, which can be described by the Effective Chiral La-
grangians (ECL), and the exotic states such as the scalar
mesons ag(980) and f,(980), which are the four-quarks
states (or KK molecule), the description of which goes
beyond the scope of ECL. Unlike K ~p scattering, where
the contribution of the exotic four-quark states a((980)
and f(980) is very important for the correct descrip-
tion of the smooth elastic background, the scalar mesons
a0(980) and f(980) do not contribute to the real part
of the S-wave amplitude of K ~n scattering near thresh-
old. As a result the smooth elastic background is fully
determined by the contribution, described by ECL. We
have computed the smooth elastic background for K n
scattering near threshold within the soft-kaon technique?’
and within the Effective chiral quark model with chiral
U(3) xU(3) symmetry [18]. We have shown that these two
approaches lead to the values of the smooth elastic back-
ground of K ~n scattering which are compared within the
accuracy about 10%.

This has made the result of the calculation of the
smooth elastic background for K~ p scattering, carried
out in [6] within the Effective quark model with chiral
U(3) x U(3) symmetry, more credible. Recall, that the
calculation of the smooth elastic background for K p
scattering within the effective quark model with chiral
U(3) x U(3) symmetry has been justified by the absence
of the theoretical and experimental information about the
coupling constants of the exotic scalar mesons a((980)
and fp(980) with nucleons. In [6] we have computed
the smooth elastic background for K ~p scattering near
threshold within the Effective Chiral Lagrangian approach
and fixed the coupling constants of the SINN interactions,
where S = a¢(980) and f;(980).

The imaginary part Zmf& ¢(0) of the S-wave ampli-
tude of the three-body reaction K~ (pn)ss, — K~ (pn)ss,
is determined by the inelastic channels with the two-body
intermediate states K~ (pn)sg, — NY — K~ (pn)sg,,
where NY is nA°, nX° and pX—, and the three-body in-
termediate states K~ (pn)sg, — NY7m — K~ (pn)sg, .

We have computed the contributions of the two-body
channels K~ (pn)ss, — NY — K~ (pn)ss,, where NY is
nA% nX° and pX~. The calculation of the amplitudes of
the reactions K~ (pn)sg, — NY we have carried out in the
one-pseudoscalar and one-scalar meson exchange approx-
imation. The contribution of scalar meson is computed in

20 This is equivalent to the leading order in chiral expansion
of ChPT by Gasser and Leutwyler with a non-linear realization
of chiral U(3) xU(3) symmetry [35] realizing the ECL approach
to the description of strong low-energy interactions of hadrons.
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the infinite mass limit that corresponds to a non-linear
realization of chiral U(3) x U(3) symmetry.

We have shown that the NY pairs in the reactions
K~ (pn)ss, — NY can be produced in the 3P; and 'P;
states. Accounting for the rescattering of the mp pair in
the 2S; state and the NY pairs in the 3P; and 'P; states
we have computed the S-wave amplitudes f& 4(0)yy of
K~ d scattering near threshold, caused by the two-body in-
elastic channels K~ (pn)ss, — NY — K~ (pn)sg,. As has
been pointed out in [19] the amplitudes of the rescattering
of the NY pairs produced near threshold of the reactions
K~ (pn)ss, — NY describe effectively the contribution of
the set of resonances with the quantum numbers of the
NY pairs.

Using the DGBT formula for the energy level displace-
ment we have computed the energy level displacements of
the ground state of kaonic deuterium induced by the two-
body inelastic channels K~ (pn)ss, — NY — K~ (pn)sg,.
Using the experimental data on the rates of the production
of the states NY is nA", nX° and pX~ in the reactions
K~d — NY, we have estimated the expected value of the
total width of the energy level of the ground state of kaonic
deuterium and the contribution of the three-body inelas-
tic channels to the shift of the energy level of the ground
state of kaonic deuterium. As a result, we have found that
the total energy level displacement of the ground state of
kaonic deuterium should be equal to

Iy, -
—e1s + 171 = 6025 40) =
(—325 4 60) + i(315 & 50) eV,

that corresponds to the S-wave amplitude of K ~d scat-
tering near threshold

K74(0) = (—0.540 + 0.095) +4(0.521 + 0.075) fm.

The theoretical value of the S-wave amplitude of K ~d
scattering near threshold and the approach, used for the
calculation of the contribution of the inelastic two-body
channels, have been justified by the description of the
S-wave amplitude of 7m~d scattering and the calcula-
tion of the contribution of the inelastic two-body channel
7-d — (nn)sp, — 7~ d in agreement with the experimen-
tal data on the energy level displacement of the ground
state of pionic deuterium [28].

Of course, the complete confirmation of the the-
oretical prediction for the S-wave amplitude of K~—d
scattering and the energy level displacement of the
ground state of kaonic deuterium obtained above
should go through the calculation of the contribution
of the three-body inelastic channels, which we are
planning to carry out in our forthcoming publication.
Indeed, there are seven three-body inelastic channels
K~ (pn)ss, — (NY)sg,m — K~ (pn)sg, with NYn =
nX~at, pX 0 nX070 pX0r— nXtr~, nA%0 and
pA%7~, which would exceed a reasonable size of this paper.

The theoretical value of the energy level displacement
of the ground state of kaonic deuterium obtained above
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can be used for the planning of experiments on the mea-
surement of the energy level displacement of kaonic deu-
terium by the DEAR, Collaboration at Frascati.

We are grateful to Torleif Ericson, Alexander Kobushkin and
Yaroslav Berdnikov for numerous fruitful discussions.
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